- Opinion
- Published:
Functional mapping — how to map and study the genetic architecture of dynamic complex traits
Nature Reviews Geneticsvolume 7, pages229–237 (2006)Cite this article
3478Accesses
304Citations
4Altmetric
Abstract
The development of any organism is a complex dynamic process that is controlled by a network of genes as well as by environmental factors. Traditional mapping approaches for analysing phenotypic data measured at a single time point are too simple to reveal the genetic control of developmental processes. A general statistical mapping framework, called functional mapping, has been proposed to characterize, in a single step, the quantitative trait loci (QTLs) or nucleotides (QTNs) that underlie a complex dynamic trait. Functional mapping estimates mathematical parameters that describe the developmental mechanisms of trait formation and expression for each QTL or QTN. The approach provides a useful quantitative and testable framework for assessing the interplay between gene actions or interactions and developmental changes.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Lynch, M. & Walsh, B.Genetics and Analysis of Quantitative Traits (Sinauer, Sunderland, Massachusetts, 1998).
Hallauer, A. R. & Miranda, F. J. B.Quantitative Genetics in Maize Breeding 2nd edn (Iowa State Univ. Press, Ames, Iowa, 1988).
Atchley, W. R. Ontogeny, timing of development, and genetic variance–covariance structure.Am. Nat.123, 519–540 (1984).
Wolf, J. B., Frankino, W. A., Agrawal, A. F., Brodie, E. D. 3rd & Moore, A. J. Developmental interactions and the constituents of quantitative variation.Evolution55, 232–245 (2001).
Drayne, D. et al. Genetic mapping of the human X-chromosome by using restriction fragment length polymorphisms.Proc. Natl Acad. Sci. USA81, 2836–2839 (1984).
Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm.J. R. Stat. Soc. Ser. B39, 1–38 (1977).
Lander, E. S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics121, 185–199 (1989).
Zeng, Z. -B. Precision mapping of quantitative trait loci.Genetics136, 1457–1468 (1994).
Jansen, R. C. & Stam, P. High resolution mapping of quantitative traits into multiple loci via interval mapping.Genetics136, 1447–1455 (1994).
Hoeschele, I. inHandbook of Statistical Genetics (eds Balding, D. J., Bishop, M. & Cannings, C.) 599–644 (Wiley, New York, 2001).
Wu, R. L., Ma, C. -X. & Casella, G. Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations.Genetics160, 779–792 (2002).
Wang, H. et al. Bayesian shrinkage estimation of QTL parameters.Genetics170, 465–480 (2005).
Cheverud, J. M. et al. Quantitative trait loci for murine growth.Genetics142, 1305–1319 (1996).
Mackay, T. F. C. Quantitative trait loci inDrosophila.Nature Rev. Genet.2, 11–20 (2001).
Mauricio, R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology.Nature Rev. Genet.2, 370–381 (2001).
Peltonen, L. & McKusick, V. A. Dissecting human disease in the postgenomic era.Science291, 1224–1229 (2001).
Andersson, L. & Georges, M. Domestic-animal genomics; Deciphering the genetics of complex traits.Nature Rev. Genet.5, 202–212 (2004).
Mauricio, R. Ontogenetics of QTL: the genetic architecture of trichome density over time inArabidopsis thaliana.Genetica123, 75–85 (2004).
Jiang, C. & Zeng, Z. -B. Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics140, 1111–1127 (1995).
Diggle, P. J., Liang, K. Y. & Zeger, S. L.Analysis of Longitudinal Data (Oxford Univ. Press, Oxford, 1994).
Ma, C. X., Casella, G. & Wu, R. L. Functional mapping of quantitative trait loci underlying the character process: A theoretical framework.Genetics161, 1751–1762 (2002).
Wu, R. L., Ma, C. -X., Zhao, W. & Casella, G. Functional mapping of quantitative trait loci underlying growth rates: A parametric model.Physiol. Genomics14, 241–249 (2003).
Wu, R. L., Ma, C. -X., Lou, Y. -X. & Casella, G. Molecular dissection of allometry, ontogeny and plasticity: A genomic view of developmental biology.BioScience53, 1041–1047 (2003).
Wu, R. L., Ma, C. -X., Lin, M. & Casella, G. A general framework for analyzing the genetic architecture of developmental characteristics.Genetics166, 1541–1551 (2004).
Wu, R. L., Ma, C. X., Lin, M., Wang, Z. H. & Casella, G. Functional mapping of quantitative trait loci underlying growth trajectories using a transform-both-sides logistic model.Biometrics60, 729–738 (2004).
Wu, R. L., Ma, C. X., Littell, R. C. & Casella, G. A statistical model for the genetic origin of allometric scaling laws in biology.J. Theor. Biol.217, 275–287 (2002).
Wu, R. L., Wang, Z. H., Zhao, W. & Cheverud, J. M. A mechanistic model for genetic machinery of ontogenetic growth.Genetics168, 2383–2394 (2004).
Brody, S.Bioenergetics and Growth (Reinhold, New York, 1945).
von Bertalanffy, L. Quantitative laws for metabolism and growth.Quart. Rev. Biol.32, 217–231 (1957).
Richards, F. J. A flexible growth function for empirical use.J. Exp. Bot.10, 290–300 (1959).
Rice, S. H. The analysis of ontogenetic trajectories: When a change in size or shape is not heterochrony.Proc. Natl Acad. Sci. USA94, 907–912 (1997).
West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth.Nature413, 628–631 (2001).
Anholt, R. R. & Mackay, T. F. C. Quantitative genetic analyses of complex behaviours inDrosophila.Nature Rev. Genet.5, 838–849 (2004).
Whitlock, M. C., Phillips, P. C., Moore, F. B. & Tonsor, S. J. Multiple fitness peaks and epistasis.Ann. Rev. Ecol. Syst.26, 601–629 (1995).
Wolf, J. B. Gene interactions from maternal effects.Evolution54, 1882–1898 (2000).
Wolf, J. B., Brodie, E. D. 3rd & Wade, M. J.Epistasis and the Evolutionary Process (Oxford Univ. Press, Oxford, 2000).
Carlborg O & Haley, C. S. Epsitasis: too often neglected in complex trait studies?Nature Rev. Genet.5, 618–625 (2004).
Moore, J. H. The ubiquitous nature of epistasis in determining susceptibility to common human diseases.Hum. Hered.56, 73–82 (2003).
Wu, R. L., Ma, C. -X., Hou, W., Corva, P. & Medrano, J. F. Functional mapping of quantitative trait loci that interact with thehg gene to regulate growth trajectories in mice.Genetics171, 239–249 (2005).
Scheiner, S. M. Genetics and evolution of phenotypic plasticity.Ann. Rev. Ecol. Sys.24, 35–68 (1993).
Schlichting, C. D. & Pigliucci, M.Phenotypic Evolution: A Reaction Norm Perspective (Sinauer, Sunderland, Massachusetts, 1998).
Via, S. et al. Adaptive phenotypic plasticity: Consensus and controversy.Trends Ecol. Evol.5, 212–217 (1995).
Wu, R. L. The detection of plasticity genes in heterogeneous environments.Evolution52, 967–977 (1998).
Leips, J. & Mackay, T. F. C. Quantitative trait loci for life span inDrosophila melanogaster: Interactions with genetic background and larval density.Genetics155, 1773–1788.
Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding inManduca sexta caterpillars.Physiol. Zool.70, 631–638 (1997).
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. Sexual conflict.Trends Ecol. Evol.18, 41–47 (2003).
Zhao, W., Ma, C. -X., Cheverud, J. M. & Wu, R. L. A unifying statistical model for QTL mapping of genotype × sex interaction for developmental trajectories.Physiol. Genomics19: 218–227 (2004).
Zhao, W., Zhu, J., Gallo-Meagher, M. & Wu, R. L. A unified statistical model for functional mapping of genotype × environment interactions for ontogenetic development.Genetics168, 1751–1762 (2004).
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate.Science293, 2248–2251 (2001).
West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology.Science276, 122–126 (1997).
West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms.Science284, 1677–1679 (1999).
Guiot, C. P., Degiorgis, G., Delsanto, P. P., Gabriele, P. & Seisboeck, T. S. Does tumor growth follow a 'universal law'?J. Theor. Biol.225, 147–151 (2003).
Ambros, V. Control of developmental timing inCaenorhabditis elegans.Curr. Opin. Genet. Dev.10, 428–33 (2000).
Rougvie, A. E. Control of developmental timing in animals.Nature Rev. Genet.2, 690–701 (2001).
Niklas, K. J.Plant Allometry: the scaling of form and process (Univ. Chicago Press, Chicago, 1994).
Heath, S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models.Am. J. Hum. Genet.61, 748–760 (1997).
Meyer, K. Random regression to model phenotypic variation in monthly weights of Australian beef cows.Livestock Prod. Sci.65, 19–38 (2000).
Macgregor, S., Knott, S. A., White, I. & Visscher, P. M. Quantitative trait locus analysis of longitudinal quantitative trait data in complex pedigrees.Genetics171, 1365–1376 (2005).
Lou, X. -Y. et al. A haplotype-based algorithm for multilocus linkage disequilibrium mapping of quantitative trait loci with epistasis in natural populations.Genetics163, 1533–1548 (2003).
Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome.Nature Rev. Genet.4, 587–597 (2003).
Wang, Z. H. & Wu, R. L. A statistical model for high-resolution mapping of quantitative trait loci determining human HIV-1 dynamics.Stat. Med.23, 3033–3051 (2004).
Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. & Ho, D. D. HIV-1 dynamicsin vivo: Virion clearance rate, infected cell life-span, and viral generation time.Science271, 1582–1586 (1996).
Nowak, M. A. & May, R. M.Virus Dynamics (Oxford Univ. Press, New York, 2000).
Gong, Y. et al. A statistical model for high-resolution mapping of quantitative trait loci affecting pharmacodynamic processes.Pharmacogenomics J.4, 315–321 (2004).
Wu, R. L. & Zeng, Z. -B. Joint linkage and linkage disequilibrium mapping in natural populations.Genetics157, 899–909 (2001).
Frary, A. et al.fw2.2: a quantitative trait locus key to the evolution of tomato fruit size.Science289, 85–88 (2000).
Cooper, R. S. & Psaty, B. M. Genomics and medicine: Distraction, incremental progress, or the dawn of a new age?Ann. Int. Med.138, 576–680 (2003).
Liu, T., Johnson, J. A., Casella, G. & Wu, R. L. Sequencing complex diseases with HapMap.Genetics168, 503–511 (2004).
Yalcin, B., Flint, J. & Mott, R. Using progenitor strain information to identify quantitative trait nucleotides in outbred mice.Genetics171, 673–681 (2005).
Lin, M., Aquilante, C., Johnson, J. A. & Wu, R. L. Sequencing drug response with HapMap.Pharmacogenomics J.5, 149–156 (2005).
Lin, M. & Wu, R. L. Theoretical basis for the identification of allelic variants that encode drug efficacy and toxicity.Genetics170, 919–928 (2005).
Pletcher, S. D. & Geyer, C. J. The genetic analysis of age-dependent traits: Modeling the character process.Genetics153, 825–835 (1999).
Jaffrezix, F. & Pletcher, S. D. Statistical models for estimating the genetic basis of repeated measures and other function-valued traits.Genetics156, 913–922 (2000).
Kirkpatrick, M. & Heckman, N. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters.J. Math. Biol.27, 429–450 (1989).
Kirkpatrick, M., Hill, W. G. & Thompson, R. Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle.Genet. Res.64, 57–69 (1994).
Norton, L. A Gompertzian model of human breast cancer growth.Cancer Res.48, 7067–7071 (1988).
Gatenby, R. A. & Maini, P. K. Mathematical oncology: Cancer summed up.Nature421, 321 (2003).
Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression.Nature Rev. Cancer4, 197–205 (2004).
Izumi, Y. et al. Responses to antiangiogenesis treatment of spontaneous autochthonous tumors and their isografts.Cancer Res.63, 747–751 (2003).
Raff, R. A. Evo-devo: the evolution of a new discipline.Nature Rev. Genet.1, 74–79 (2000).
Arthur, W. The emerging conceptual framework of evolutionary developmental biology.Nature415, 757–764 (2002).
Vinicius, L. & Lahr, M. M. Morphometric heterochrony and the evolution of growth.Evolution57, 2459–2468 (2003).
Dusheck, J. It's the ecology, stupid!Nature418, 578–579 (2002).
Zhao, W., Chen, Y. Q., Casella, G., Cheverud, J. M. & Wu, R. L. A nonstationary model for functional mapping of complex traits.Bioinformatics21, 2469–2477 (2005).
Lin, M. & Wu, R. L. A unifying model for nonparametric functional mapping of longitudinal trajectories and time-to-events.BMC Bioinformatics (in the press).
Vaughn, T. T. et al. Mapping quantitative trait loci for murine growth — A closer look at genetic architecture.Genet. Res.74, 313–322 (1999).
Acknowledgements
The authors thank the three anonymous referees for their constructive comments that have improved the presentation of this manuscript. This work was supported by an Outstanding Young Investigator Award of the National Natural Science Foundation of China, a University of Florida Research Opportunity Fund, a University of South Florida Biodefense grant and the National Institutes of Health.
Author information
Authors and Affiliations
People's Republic of China and the Department of Statistics, School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang 311300, University of Florida, Gainesville, 32611, Florida, USA
Rongling Wu
Department of Biostatistics and Bioinformatics, Duke University, Durham, 27710, North Carolina, USA
Min Lin
Department of Statistics, University of Florida,
Min Lin
- Rongling Wu
Search author on:PubMed Google Scholar
- Min Lin
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toRongling Wu.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
FURTHER INFORMATION
Glossary
- Allometry
The change in proportion of various parts of an organism as a consequence of growth.
- Allometric scaling law
Metabolic rates or other biological variables that scale as multiples of one-quarter of body mass.
- Biexponential equation
An equation that describes two subsequent processes in which the responses change exponentially with a variable in each process.
- Dynamic biological thermal function
A function that describes the change of growth rate or other variables of an organism with different temperatures.
- Exercise stress test
A general screening tool to test the effect of exercise on the heart.
- Finite mixture model
A type of density model that comprises several component functions, usually Gaussian functions, which are combined to provide a multimodal density.
- Fourier series equation
An expansion of a periodic function in terms of an infinite sum of sines and cosines.
- Linkage disequilibrium
The non-random co-segregation of alleles at different loci in a population.
- Log-likelihood ratio
A test statistic that is expressed as the log ratio of the maximum value of the likelihood function under the constraint of the null hypothesis to the maximum value without that constraint.
- Logistic equation
Also called an S-shaped curve. It models a process of growth in which the initial stage of growth is approximately exponential. As competition arises, the growth slows, and at maturity, growth stops.
- Model selection
A process in which the best model is selected from many competing models that fit the data.
- Polynomial
Functions that have the formf(x) =anxn +a−1xn−1 + ... +a1x +a0, wheren is a non-negative integer.
- Shrinkage estimation
An estimating procedure by which all candidate variables are taken into account in the model, but their estimated effects are forced to shrink towards zero.
- Wavelet transform approach
An approach that compresses high-order dimensional data to a low-order representation without losing the original information.
Rights and permissions
About this article
Cite this article
Wu, R., Lin, M. Functional mapping — how to map and study the genetic architecture of dynamic complex traits.Nat Rev Genet7, 229–237 (2006). https://doi.org/10.1038/nrg1804
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions
- Justin Blancon
- Clément Buet
- Sébastien Praud
Theoretical and Applied Genetics (2024)
Dynamic QTL-based ecophysiological models to predict phenotype from genotype and environment data
- C. Eduardo Vallejos
- James W. Jones
- Melanie J. Correll
BMC Plant Biology (2022)
Dynamic analysis of QTLs on plant height with single segment substitution lines in rice
- Yu Fu
- Hongyuan Zhao
- Shaokui Wang
Scientific Reports (2022)
Association mapping for abiotic stress tolerance using heat- and drought-related syntenic markers in okra
- Ikhlaq Ahmad
- Rashid Mehmood Rana
- Muhammad Sajjad
Molecular Biology Reports (2022)
Functional mapping of tillering QTLs using the Wang–Lan–Ding model and a SSSL population
- Xin Luan
- Liang Xiong
- Shaokui Wang
Molecular Genetics and Genomics (2021)


