Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Opinion
  • Published:

Functional mapping — how to map and study the genetic architecture of dynamic complex traits

Nature Reviews Geneticsvolume 7pages229–237 (2006)Cite this article

Abstract

The development of any organism is a complex dynamic process that is controlled by a network of genes as well as by environmental factors. Traditional mapping approaches for analysing phenotypic data measured at a single time point are too simple to reveal the genetic control of developmental processes. A general statistical mapping framework, called functional mapping, has been proposed to characterize, in a single step, the quantitative trait loci (QTLs) or nucleotides (QTNs) that underlie a complex dynamic trait. Functional mapping estimates mathematical parameters that describe the developmental mechanisms of trait formation and expression for each QTL or QTN. The approach provides a useful quantitative and testable framework for assessing the interplay between gene actions or interactions and developmental changes.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four representative patterns for the genetic control of growth trajectories by a dynamic QTL.
Figure 2: Pleiotropic QTL effects on vegetative growth and reproductive behaviour.

Similar content being viewed by others

Article25 January 2023

References

  1. Lynch, M. & Walsh, B.Genetics and Analysis of Quantitative Traits (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  2. Hallauer, A. R. & Miranda, F. J. B.Quantitative Genetics in Maize Breeding 2nd edn (Iowa State Univ. Press, Ames, Iowa, 1988).

    Google Scholar 

  3. Atchley, W. R. Ontogeny, timing of development, and genetic variance–covariance structure.Am. Nat.123, 519–540 (1984).

    Article  Google Scholar 

  4. Wolf, J. B., Frankino, W. A., Agrawal, A. F., Brodie, E. D. 3rd & Moore, A. J. Developmental interactions and the constituents of quantitative variation.Evolution55, 232–245 (2001).

    Article CAS PubMed  Google Scholar 

  5. Drayne, D. et al. Genetic mapping of the human X-chromosome by using restriction fragment length polymorphisms.Proc. Natl Acad. Sci. USA81, 2836–2839 (1984).

    Article  Google Scholar 

  6. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm.J. R. Stat. Soc. Ser. B39, 1–38 (1977).

    Google Scholar 

  7. Lander, E. S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics121, 185–199 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  8. Zeng, Z. -B. Precision mapping of quantitative trait loci.Genetics136, 1457–1468 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  9. Jansen, R. C. & Stam, P. High resolution mapping of quantitative traits into multiple loci via interval mapping.Genetics136, 1447–1455 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  10. Hoeschele, I. inHandbook of Statistical Genetics (eds Balding, D. J., Bishop, M. & Cannings, C.) 599–644 (Wiley, New York, 2001).

    Google Scholar 

  11. Wu, R. L., Ma, C. -X. & Casella, G. Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations.Genetics160, 779–792 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  12. Wang, H. et al. Bayesian shrinkage estimation of QTL parameters.Genetics170, 465–480 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Cheverud, J. M. et al. Quantitative trait loci for murine growth.Genetics142, 1305–1319 (1996).

    CAS PubMed PubMed Central  Google Scholar 

  14. Mackay, T. F. C. Quantitative trait loci inDrosophila.Nature Rev. Genet.2, 11–20 (2001).

    Article CAS PubMed  Google Scholar 

  15. Mauricio, R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology.Nature Rev. Genet.2, 370–381 (2001).

    Article CAS PubMed  Google Scholar 

  16. Peltonen, L. & McKusick, V. A. Dissecting human disease in the postgenomic era.Science291, 1224–1229 (2001).

    Article CAS PubMed  Google Scholar 

  17. Andersson, L. & Georges, M. Domestic-animal genomics; Deciphering the genetics of complex traits.Nature Rev. Genet.5, 202–212 (2004).

    Article CAS PubMed  Google Scholar 

  18. Mauricio, R. Ontogenetics of QTL: the genetic architecture of trichome density over time inArabidopsis thaliana.Genetica123, 75–85 (2004).

    Article  Google Scholar 

  19. Jiang, C. & Zeng, Z. -B. Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics140, 1111–1127 (1995).

    CAS PubMed PubMed Central  Google Scholar 

  20. Diggle, P. J., Liang, K. Y. & Zeger, S. L.Analysis of Longitudinal Data (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  21. Ma, C. X., Casella, G. & Wu, R. L. Functional mapping of quantitative trait loci underlying the character process: A theoretical framework.Genetics161, 1751–1762 (2002).

    PubMed PubMed Central  Google Scholar 

  22. Wu, R. L., Ma, C. -X., Zhao, W. & Casella, G. Functional mapping of quantitative trait loci underlying growth rates: A parametric model.Physiol. Genomics14, 241–249 (2003).

    Article CAS PubMed  Google Scholar 

  23. Wu, R. L., Ma, C. -X., Lou, Y. -X. & Casella, G. Molecular dissection of allometry, ontogeny and plasticity: A genomic view of developmental biology.BioScience53, 1041–1047 (2003).

    Article  Google Scholar 

  24. Wu, R. L., Ma, C. -X., Lin, M. & Casella, G. A general framework for analyzing the genetic architecture of developmental characteristics.Genetics166, 1541–1551 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Wu, R. L., Ma, C. X., Lin, M., Wang, Z. H. & Casella, G. Functional mapping of quantitative trait loci underlying growth trajectories using a transform-both-sides logistic model.Biometrics60, 729–738 (2004).

    Article PubMed  Google Scholar 

  26. Wu, R. L., Ma, C. X., Littell, R. C. & Casella, G. A statistical model for the genetic origin of allometric scaling laws in biology.J. Theor. Biol.217, 275–287 (2002).

    Article  Google Scholar 

  27. Wu, R. L., Wang, Z. H., Zhao, W. & Cheverud, J. M. A mechanistic model for genetic machinery of ontogenetic growth.Genetics168, 2383–2394 (2004).

    Article PubMed PubMed Central  Google Scholar 

  28. Brody, S.Bioenergetics and Growth (Reinhold, New York, 1945).

    Google Scholar 

  29. von Bertalanffy, L. Quantitative laws for metabolism and growth.Quart. Rev. Biol.32, 217–231 (1957).

    Article CAS PubMed  Google Scholar 

  30. Richards, F. J. A flexible growth function for empirical use.J. Exp. Bot.10, 290–300 (1959).

    Article  Google Scholar 

  31. Rice, S. H. The analysis of ontogenetic trajectories: When a change in size or shape is not heterochrony.Proc. Natl Acad. Sci. USA94, 907–912 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth.Nature413, 628–631 (2001).

    Article CAS PubMed  Google Scholar 

  33. Anholt, R. R. & Mackay, T. F. C. Quantitative genetic analyses of complex behaviours inDrosophila.Nature Rev. Genet.5, 838–849 (2004).

    Article CAS PubMed  Google Scholar 

  34. Whitlock, M. C., Phillips, P. C., Moore, F. B. & Tonsor, S. J. Multiple fitness peaks and epistasis.Ann. Rev. Ecol. Syst.26, 601–629 (1995).

    Article  Google Scholar 

  35. Wolf, J. B. Gene interactions from maternal effects.Evolution54, 1882–1898 (2000).

    Article CAS PubMed  Google Scholar 

  36. Wolf, J. B., Brodie, E. D. 3rd & Wade, M. J.Epistasis and the Evolutionary Process (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  37. Carlborg O & Haley, C. S. Epsitasis: too often neglected in complex trait studies?Nature Rev. Genet.5, 618–625 (2004).

    Article CAS PubMed  Google Scholar 

  38. Moore, J. H. The ubiquitous nature of epistasis in determining susceptibility to common human diseases.Hum. Hered.56, 73–82 (2003).

    Article PubMed  Google Scholar 

  39. Wu, R. L., Ma, C. -X., Hou, W., Corva, P. & Medrano, J. F. Functional mapping of quantitative trait loci that interact with thehg gene to regulate growth trajectories in mice.Genetics171, 239–249 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Scheiner, S. M. Genetics and evolution of phenotypic plasticity.Ann. Rev. Ecol. Sys.24, 35–68 (1993).

    Article  Google Scholar 

  41. Schlichting, C. D. & Pigliucci, M.Phenotypic Evolution: A Reaction Norm Perspective (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  42. Via, S. et al. Adaptive phenotypic plasticity: Consensus and controversy.Trends Ecol. Evol.5, 212–217 (1995).

    Article  Google Scholar 

  43. Wu, R. L. The detection of plasticity genes in heterogeneous environments.Evolution52, 967–977 (1998).

    Article PubMed  Google Scholar 

  44. Leips, J. & Mackay, T. F. C. Quantitative trait loci for life span inDrosophila melanogaster: Interactions with genetic background and larval density.Genetics155, 1773–1788.

  45. Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding inManduca sexta caterpillars.Physiol. Zool.70, 631–638 (1997).

    Article CAS PubMed  Google Scholar 

  46. Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. Sexual conflict.Trends Ecol. Evol.18, 41–47 (2003).

    Article  Google Scholar 

  47. Zhao, W., Ma, C. -X., Cheverud, J. M. & Wu, R. L. A unifying statistical model for QTL mapping of genotype × sex interaction for developmental trajectories.Physiol. Genomics19: 218–227 (2004).

    Article CAS PubMed  Google Scholar 

  48. Zhao, W., Zhu, J., Gallo-Meagher, M. & Wu, R. L. A unified statistical model for functional mapping of genotype × environment interactions for ontogenetic development.Genetics168, 1751–1762 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate.Science293, 2248–2251 (2001).

    Article CAS PubMed  Google Scholar 

  50. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology.Science276, 122–126 (1997).

    Article CAS PubMed  Google Scholar 

  51. West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms.Science284, 1677–1679 (1999).

    Article CAS PubMed  Google Scholar 

  52. Guiot, C. P., Degiorgis, G., Delsanto, P. P., Gabriele, P. & Seisboeck, T. S. Does tumor growth follow a 'universal law'?J. Theor. Biol.225, 147–151 (2003).

    Article PubMed  Google Scholar 

  53. Ambros, V. Control of developmental timing inCaenorhabditis elegans.Curr. Opin. Genet. Dev.10, 428–33 (2000).

    Article CAS PubMed  Google Scholar 

  54. Rougvie, A. E. Control of developmental timing in animals.Nature Rev. Genet.2, 690–701 (2001).

    Article CAS PubMed  Google Scholar 

  55. Niklas, K. J.Plant Allometry: the scaling of form and process (Univ. Chicago Press, Chicago, 1994).

    Google Scholar 

  56. Heath, S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models.Am. J. Hum. Genet.61, 748–760 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Meyer, K. Random regression to model phenotypic variation in monthly weights of Australian beef cows.Livestock Prod. Sci.65, 19–38 (2000).

    Article  Google Scholar 

  58. Macgregor, S., Knott, S. A., White, I. & Visscher, P. M. Quantitative trait locus analysis of longitudinal quantitative trait data in complex pedigrees.Genetics171, 1365–1376 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Lou, X. -Y. et al. A haplotype-based algorithm for multilocus linkage disequilibrium mapping of quantitative trait loci with epistasis in natural populations.Genetics163, 1533–1548 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  60. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome.Nature Rev. Genet.4, 587–597 (2003).

    Article CAS PubMed  Google Scholar 

  61. Wang, Z. H. & Wu, R. L. A statistical model for high-resolution mapping of quantitative trait loci determining human HIV-1 dynamics.Stat. Med.23, 3033–3051 (2004).

    Article PubMed  Google Scholar 

  62. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. & Ho, D. D. HIV-1 dynamicsin vivo: Virion clearance rate, infected cell life-span, and viral generation time.Science271, 1582–1586 (1996).

    Article CAS PubMed  Google Scholar 

  63. Nowak, M. A. & May, R. M.Virus Dynamics (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  64. Gong, Y. et al. A statistical model for high-resolution mapping of quantitative trait loci affecting pharmacodynamic processes.Pharmacogenomics J.4, 315–321 (2004).

    Article CAS PubMed  Google Scholar 

  65. Wu, R. L. & Zeng, Z. -B. Joint linkage and linkage disequilibrium mapping in natural populations.Genetics157, 899–909 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  66. Frary, A. et al.fw2.2: a quantitative trait locus key to the evolution of tomato fruit size.Science289, 85–88 (2000).

    Article CAS PubMed  Google Scholar 

  67. Cooper, R. S. & Psaty, B. M. Genomics and medicine: Distraction, incremental progress, or the dawn of a new age?Ann. Int. Med.138, 576–680 (2003).

    Article PubMed  Google Scholar 

  68. Liu, T., Johnson, J. A., Casella, G. & Wu, R. L. Sequencing complex diseases with HapMap.Genetics168, 503–511 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Yalcin, B., Flint, J. & Mott, R. Using progenitor strain information to identify quantitative trait nucleotides in outbred mice.Genetics171, 673–681 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Lin, M., Aquilante, C., Johnson, J. A. & Wu, R. L. Sequencing drug response with HapMap.Pharmacogenomics J.5, 149–156 (2005).

    Article CAS PubMed  Google Scholar 

  71. Lin, M. & Wu, R. L. Theoretical basis for the identification of allelic variants that encode drug efficacy and toxicity.Genetics170, 919–928 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Pletcher, S. D. & Geyer, C. J. The genetic analysis of age-dependent traits: Modeling the character process.Genetics153, 825–835 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  73. Jaffrezix, F. & Pletcher, S. D. Statistical models for estimating the genetic basis of repeated measures and other function-valued traits.Genetics156, 913–922 (2000).

    Google Scholar 

  74. Kirkpatrick, M. & Heckman, N. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters.J. Math. Biol.27, 429–450 (1989).

    Article CAS PubMed  Google Scholar 

  75. Kirkpatrick, M., Hill, W. G. & Thompson, R. Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle.Genet. Res.64, 57–69 (1994).

    Article CAS PubMed  Google Scholar 

  76. Norton, L. A Gompertzian model of human breast cancer growth.Cancer Res.48, 7067–7071 (1988).

    CAS PubMed  Google Scholar 

  77. Gatenby, R. A. & Maini, P. K. Mathematical oncology: Cancer summed up.Nature421, 321 (2003).

    Article CAS PubMed  Google Scholar 

  78. Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression.Nature Rev. Cancer4, 197–205 (2004).

    Article CAS  Google Scholar 

  79. Izumi, Y. et al. Responses to antiangiogenesis treatment of spontaneous autochthonous tumors and their isografts.Cancer Res.63, 747–751 (2003).

    CAS PubMed  Google Scholar 

  80. Raff, R. A. Evo-devo: the evolution of a new discipline.Nature Rev. Genet.1, 74–79 (2000).

    Article CAS PubMed  Google Scholar 

  81. Arthur, W. The emerging conceptual framework of evolutionary developmental biology.Nature415, 757–764 (2002).

    Article CAS PubMed  Google Scholar 

  82. Vinicius, L. & Lahr, M. M. Morphometric heterochrony and the evolution of growth.Evolution57, 2459–2468 (2003).

    Article PubMed  Google Scholar 

  83. Dusheck, J. It's the ecology, stupid!Nature418, 578–579 (2002).

    Article CAS PubMed  Google Scholar 

  84. Zhao, W., Chen, Y. Q., Casella, G., Cheverud, J. M. & Wu, R. L. A nonstationary model for functional mapping of complex traits.Bioinformatics21, 2469–2477 (2005).

    Article CAS PubMed  Google Scholar 

  85. Lin, M. & Wu, R. L. A unifying model for nonparametric functional mapping of longitudinal trajectories and time-to-events.BMC Bioinformatics (in the press).

  86. Vaughn, T. T. et al. Mapping quantitative trait loci for murine growth — A closer look at genetic architecture.Genet. Res.74, 313–322 (1999).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the three anonymous referees for their constructive comments that have improved the presentation of this manuscript. This work was supported by an Outstanding Young Investigator Award of the National Natural Science Foundation of China, a University of Florida Research Opportunity Fund, a University of South Florida Biodefense grant and the National Institutes of Health.

Author information

Authors and Affiliations

  1. People's Republic of China and the Department of Statistics, School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang 311300, University of Florida, Gainesville, 32611, Florida, USA

    Rongling Wu

  2. Department of Biostatistics and Bioinformatics, Duke University, Durham, 27710, North Carolina, USA

    Min Lin

  3. Department of Statistics, University of Florida,

    Min Lin

Authors
  1. Rongling Wu
  2. Min Lin

Corresponding author

Correspondence toRongling Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Allometry

The change in proportion of various parts of an organism as a consequence of growth.

Allometric scaling law

Metabolic rates or other biological variables that scale as multiples of one-quarter of body mass.

Biexponential equation

An equation that describes two subsequent processes in which the responses change exponentially with a variable in each process.

Dynamic biological thermal function

A function that describes the change of growth rate or other variables of an organism with different temperatures.

Exercise stress test

A general screening tool to test the effect of exercise on the heart.

Finite mixture model

A type of density model that comprises several component functions, usually Gaussian functions, which are combined to provide a multimodal density.

Fourier series equation

An expansion of a periodic function in terms of an infinite sum of sines and cosines.

Linkage disequilibrium

The non-random co-segregation of alleles at different loci in a population.

Log-likelihood ratio

A test statistic that is expressed as the log ratio of the maximum value of the likelihood function under the constraint of the null hypothesis to the maximum value without that constraint.

Logistic equation

Also called an S-shaped curve. It models a process of growth in which the initial stage of growth is approximately exponential. As competition arises, the growth slows, and at maturity, growth stops.

Model selection

A process in which the best model is selected from many competing models that fit the data.

Polynomial

Functions that have the formf(x) =anxn +a−1xn−1 + ... +a1x +a0, wheren is a non-negative integer.

Shrinkage estimation

An estimating procedure by which all candidate variables are taken into account in the model, but their estimated effects are forced to shrink towards zero.

Wavelet transform approach

An approach that compresses high-order dimensional data to a low-order representation without losing the original information.

Rights and permissions

About this article

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp