Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Review Article
  • Published:

The origin of new genes: glimpses from the young and old

Nature Reviews Geneticsvolume 4pages865–875 (2003)Cite this article

Key Points

  • The variation in the numbers of genes in different organisms indicates a general process of the origin and evolution of new genes.

  • Examining young genes is a direct approach to study this process, whereas ancient genes reveal the antiquity of some origination mechanisms.

  • Several molecular mechanisms are involved in the creation of new gene structure, among which exon shuffling, retroposition and gene duplication have been found to be particularly important.

  • A new gene in its early stage usually undergoes rapid changes in sequence, structure and expression, which indicates a continuous evolution of function.

  • A significant role of positive Darwinian selection has been detected underlying these changes and adaptive evolution might have directed the entire origination process of new genes.

  • Direct and indirect observations of new genes in eukaryotic genomes show that genes with new functions are not as rare as was previously thought.

  • Analysis of the repeated new gene origination by retroposition in theDrosophila genome has uncovered a pattern in which new genes tend to avoid the X-chromosome linkage and most of the X-chromosome-derived autosomal new genes have evolved male-specific functions. This points to the importance of genome position in new gene origination.

Abstract

Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two examples of the accelerated evolution of new genes with new functions.
Figure 2: The biased distribution of retroposition events in theDrosophila melanogaster genome.

Similar content being viewed by others

References

  1. Gilbert, W. Why genes in pieces?Nature271, 44 (1978).

    Article  Google Scholar 

  2. van Rijk, A. & Bloemendal, H. Molecular mechanisms of exon shuffling: illegitimate recombination.Genetica118, 245–249 (2003).

    Article CAS PubMed  Google Scholar 

  3. van Rijk, A. A., de Jong, W. W. & Bloemendal, H. Exon shuffling mimicked in cell culture.Proc. Natl Acad. Sci. USA96, 8074–8079 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  4. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr. Exon shuffling by L1 retrotransposition.Science283, 1530–1534 (1999).

    Article CAS PubMed  Google Scholar 

  5. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes.Nature Genet.24, 363–367 (2000).

    Article CAS PubMed  Google Scholar 

  6. Kaessmann, H., Zollner, S., Nekrutenko, A. & Li, W. H. Signatures of domain shuffling in the human genome.Genome Res.12, 1642–1650 (2002).Based on analysis of human andC. elegans genomes, this paper provides new evidence that intron-phase correlation is a sign of exon shuffling that recombines protein-coding domains to form a new gene.

    Article CAS PubMed PubMed Central  Google Scholar 

  7. de Souza, S. J., Long, M., Schoenbach, L., Roy, S. W. & Gilbert, W. Intron positions correlate with module boundaries in ancient proteins.Proc. Natl Acad. Sci. USA93, 14632–14636 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Patthy, L. Exon shuffling and other ways of module exchange.Matrix Biol.15, 301–310, 311–312 (1996).

    Article CAS PubMed  Google Scholar 

  9. Ohno, S.Evolution by Gene Duplication (Springer, Berlin, 1970).

    Book  Google Scholar 

  10. Kimura, M.The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  11. Prince, V. E. & Pickett, F. B. Splitting pairs: the diverging fates of duplicated genes.Nature Rev. Genet.3, 827–837 (2002).

    Article CAS PubMed  Google Scholar 

  12. Bailey, J. A. et al. Recent segmental duplications in the human genome.Science297, 1003–1007 (2002).

    Article CAS PubMed  Google Scholar 

  13. Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome.Nature Rev. Genet.3, 65–72 (2002).

    Article CAS PubMed  Google Scholar 

  14. Makalowski, W., Mitchell, G. A. & Labuda, D. Alu sequences in the coding regions of mRNA: a source of protein variability.Trends Genet.10, 188–193 (1994).

    Article CAS PubMed  Google Scholar 

  15. Makalowski, W. inThe Impact of Short Interspersed Elements (SINEs) on the Host Genome (ed. Maraia, R. J.) 86–104 (Landes Company, Austin, 1995).

    Google Scholar 

  16. Nekrutenko, A. & Li, W. H. Transposable elements are found in a large number of human protein-coding genes.Trends Genet.17, 619–621 (2001).

    Article CAS PubMed  Google Scholar 

  17. Lorenc, A. & Makalowski, W. Transposable elements and vertebrate protein diversity.Genetica118, 467–477 (2003).

    Article  Google Scholar 

  18. Ochman, H. Lateral and oblique gene transfer.Curr. Opin. Genet. Dev.11, 616–619 (2001).

    Article CAS PubMed  Google Scholar 

  19. de Koning, A. P., Brinkman, F. S., Jones, S. J. & Keeling, P. J. Lateral gene transfer and metabolic adaptation in the human parasiteTrichomonas vaginalis.Mol. Biol. Evol.17, 1769–1773 (2000).

    Article CAS PubMed  Google Scholar 

  20. Bergthorsson, U., Adams, K. L., Thomason, B. & Palmer, J. D. Widespread horizontal transfer of mitochondrial genes in flowering plants.Nature424, 197–201 (2003).

    Article CAS PubMed  Google Scholar 

  21. Thomson, T. M. et al. Fusion of the human gene for the polyubiquitination coeffector UEV1 withKua, a newly identified gene.Genome Res.10, 1743–1756 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Nurminsky, D. I., Nurminskaya, M. V., De Aguiar, D. & Hartl, D. L. Selective sweep of a newly evolved sperm-specific gene inDrosophila.Nature396, 572–575 (1998).In this study, a youngD. melanogaster gene showed unusually rapid changes in its structure, from seemingly unrelated resources, which led to unexpected new functions of the gene in sperm tails.

    Article CAS PubMed  Google Scholar 

  23. Wang, W., Brunet, F. G., Nevo, E. & Long, M. Origin ofsphinx, a young chimeric RNA gene inDrosophila melanogaster.Proc. Natl Acad. Sci. USA99, 4448–4453 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Wang, W., Thornton, K., Berry, A. & Long, M. Nucleotide variation along theDrosophila melanogaster fourth chromosome.Science295, 134–137 (2002).

    Article CAS PubMed  Google Scholar 

  25. Haldane, J. B. S. The part played by recurrent mutation in evolution.Am. Nat.67, 5–19 (1933).

    Article  Google Scholar 

  26. Fisher, R. A. The sheltering of lethals.Am. Nat.69, 446–455 (1935).

    Article  Google Scholar 

  27. Hughes, A. L. The evolution of functionally novel proteins after gene duplication.Proc. R. Soc. Lond. B256, 119–124 (1994).

    Article CAS  Google Scholar 

  28. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations.Genetics151, 1531–1545 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  29. Walsh, J. B. How often do duplicated genes evolve new functions?Genetics139, 421–428 (1995).

    CAS PubMed PubMed Central  Google Scholar 

  30. Walsh, B. Population-genetic model of the fates of duplicate genes.Genetica118, 279–294 (2003).

    Article CAS PubMed  Google Scholar 

  31. Gu, X. Maximum-likelihood approach for gene family evolution under functional divergence.Mol. Biol. Evol.18, 453–464 (2001).

    Article CAS PubMed  Google Scholar 

  32. Long, M. & Langley, C. H. Natural selection and the origin ofjingwei, a chimeric processed functional gene inDrosophila.Science260, 91–95 (1993).

    Article CAS PubMed  Google Scholar 

  33. Messier, W. & Stewart, C. B. Episodic adaptive evolution of primate lysozymes.Nature385, 151–154 (1997).

    Article CAS PubMed  Google Scholar 

  34. Zhang, J., Rosenberg, H. F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes.Proc. Natl Acad. Sci. USA95, 3708–3713 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Zhang, J., Zhang, Y. P. & Rosenberg, H. F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey.Nature Genet.30, 411–415 (2002).In this study, the authors combine sequence analysis and recombination protein technology to detect positive selection in the adaptive evolution of a new gene duplicate to the changed digestive system in the leaf-eating colobine monkey.

    Article CAS PubMed  Google Scholar 

  36. Ohta, T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons.Genetics138, 1331–1337 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  37. Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes.Nature413, 514–519 (2001).

    Article CAS PubMed  Google Scholar 

  38. Begun, D. J. Origin and evolution of a new gene descended fromalcohol dehydrogenase inDrosophila.Genetics145, 375–382 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  39. Maston, G. A. & Ruvolo, M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection.Mol. Biol. Evol.19, 320–335 (2002).This paper discusses how an important function (involving pregnancy establishment in human and other primates) arose by gene duplication, supported by ample biological data.

    Article CAS PubMed  Google Scholar 

  40. Paulding, C. A., Ruvolo, M. & Haber, D. A. TheTre2 (USP6) oncogene is a hominoid-specific gene.Proc. Natl Acad. Sci. USA100, 2507–2511 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Long, M., de Souza, S. J., Rosenberg, C. & Gilbert, W. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor.Proc. Natl Acad. Sci. USA93, 7727–7731 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Ranz, J. M., Ponce, A. R., Hartl, D. L. & Nurminsky, D. Origin and evolution of a new gene expressed in theDrosophila sperm axoneme.Genetica118, 233–244 (2003).

    Article CAS PubMed  Google Scholar 

  43. Betrán, E., Wang, W., Jin, L. & Long, M. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene.Mol. Biol. Evol.19, 654–663 (2002).

    Article PubMed  Google Scholar 

  44. Brown, C. J., Todd, K. M. & Rosenzweig, R. F. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment.Mol. Biol. Evol.15, 931–942 (1998).This study of experimental evolution shows that a new gene function can arise rapidly as a response to a changed environment.

    Article CAS PubMed  Google Scholar 

  45. Hall, B. G. The EBG system ofE. coli: origin and evolution of a novel β-galactosidase for the metabolism of lactose.Genetica118, 143–156 (2003).

    Article CAS PubMed  Google Scholar 

  46. McDonald, J. H. & Kreitman, M. Adaptative protein evolution at theAdh locus in.Drosophila. Nature351, 652–654 (1991).

    CAS PubMed  Google Scholar 

  47. Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA.Science293, 1098–1102 (2001).

    Article CAS PubMed  Google Scholar 

  48. Malik, H. S. & Henikoff, S. Adaptive evolution of Cid, a centromere-specific histone inDrosophila.Genetics157, 1293–1298 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  49. Betrán, E. & Long, M.Dntf-2r: a youngDrosophila retroposed gene with specific male expression under positive Darwinian selection.Genetics164, 977–988 (2003).

    PubMed PubMed Central  Google Scholar 

  50. Llopart, A., Comeron, J. M., Brunet, F. G., Lachaise, D. & Long, M. Intron presence–absence polymorphism inDrosophila driven by positive Darwinian selection.Proc. Natl Acad. Sci. USA99, 8121–8126 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Cheng, C. H., Chen, L., Near, T. J. & Jin, Y. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin.Mol. Biol. Evol. 28 July 2003 (doi:10.1093/molbev/msg004).

    Article CAS PubMed  Google Scholar 

  52. Chen, L., DeVries, A. L. & Cheng, C. H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod.Proc. Natl Acad. Sci. USA94, 3817–3822 (1997).This study clearly showed how a similar environmental challenge in two different geographic locations created similar genes with the same function from different DNA materials.

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Chen, L., DeVries, A. L. & Cheng, C. H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish.Proc. Natl Acad. Sci. USA94, 3811–3816 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Cheng, C. H. & Chen, L. Evolution of an antifreeze glycoprotein.Nature401, 443–444 (1999).

    Article CAS PubMed  Google Scholar 

  55. Thornton, K. & Long, M. Rapid divergence of gene duplicates on theDrosophila melanogaster X chromosome.Mol. Biol. Evol.19, 918–925 (2002).

    Article CAS PubMed  Google Scholar 

  56. Charlesworth, B., Coyne, J. A. & Barton N. H. The relatives rates of evolution of sex chromosomes and autosomes.Am. Nat.130, 113–146 (1987).

    Article  Google Scholar 

  57. Orr, H. A. & Betancourt, A. J. Haldane's sieve and adaptation from the standing genetic variation.Genetics157, 875–884 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  58. Betancourt, A. J., Presgraves, D. C. & Swanson, W. J. A test for faster X evolution inDrosophila.Mol. Biol. Evol.19, 1816–1819 (2002).

    Article CAS PubMed  Google Scholar 

  59. The Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome.Nature409, 860–921 (2001).

  60. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome.Nature420, 520–562 (2002).

    Article CAS PubMed  Google Scholar 

  61. Betrán, E. & Long, M. Expansion of genome coding regions by acquisition of new genes.Genetica115, 65–80 (2002).

    Article PubMed  Google Scholar 

  62. Patthy, L.Protein Evolution by Exon-shuffling (Springer, New York, 1995).

    Google Scholar 

  63. Todd, A. E., Orengo, C. A. & Thornton, J. M. Evolution of function in protein superfamilies, from a structural perspective.J. Mol. Biol.307, 1113–1143 (2001).A detailed structural and sequence analysis of 31 enzyme superfamilies for which structural data are available. Interestingly, almost all of the families were subject to domain shuffling, which highlights the generality of the mechanism in new gene origination.

    Article CAS PubMed  Google Scholar 

  64. Long, M., de Souza, S. J. & Gilbert, W. Evolution of the intron–exon structure of eukaryotic genes.Curr. Opin. Genet. Dev.5, 774–778 (1995).

    Article CAS PubMed  Google Scholar 

  65. Long, M., Rosenberg, C. & Gilbert, W. Intron phase correlations and the evolution of the intron/exon structure of genes.Proc. Natl Acad. Sci. USA92, 12495–12499 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Gilbert, W., de Souza, S. J. & Long, M. Origin of genes.Proc. Natl Acad. Sci. USA94, 7698–7703 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  67. Long, M. Evolution of novel genes.Curr. Opin. Genet. Dev.11, 673–680 (2001).

    Article CAS PubMed  Google Scholar 

  68. Long, M., de Souza, S. J., Rosenberg, C. & Gilbert, W. Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis.Proc. Natl Acad. Sci. USA95, 219–223 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Patthy, L. Intron-dependent evolution: preferred types of exons and introns.FEBS Lett.214, 1–7 (1987).

    Article CAS PubMed  Google Scholar 

  70. Roy, S. W., Lewis, B. P., Fedorov, A. & Gilbert, W. Footprints of primordial introns on the eukaryotic genome.Trends Genet.17, 496–501 (2001).The authors described an unexpectedly significant correlation between the distribution of intron phases and the age of the host genes, which supported a model of ancient exon–intron structure with gradual intron addition.

    Article CAS PubMed  Google Scholar 

  71. Fedorov, A., Roy, S., Cao, X. & Gilbert, W. Phylogenetically older introns strongly correlate with module boundaries in ancient proteins.Genome Res.13, 1155–1157 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Venter, J. C. et al. The sequence of the human genome.Science291, 1304–1351 (2001).

    Article CAS PubMed  Google Scholar 

  73. Deutsch, M. & Long, M. Intron–exon structures of eukaryotic model organisms.Nucleic Acids Res.27, 3219–3228 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Long, M. & de Souza, S. J. Intron–exon structures: from molecular to population biology.Adv. Genome Biol.5A, 143–178 (1998).

    Article CAS  Google Scholar 

  75. Kazazian, H. H. J. L1 retrotransposons shape the mammalian genome.Science289, 1152–1153 (2000).

    Article CAS PubMed  Google Scholar 

  76. Pickeral, O. K., Makalowski, W., Boguski, M. S. & Boeke, J. D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition.Genome Res.10, 411–415 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  77. Harrison, P. M. et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22.Genome Res.12, 272–280 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  78. Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced.Genome Res.12, 1060–1067 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Lifschytz, E. & Lindsley, D. L. The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation).Proc. Natl Acad. Sci. USA69, 182–186 (1972).

    Article CAS PubMed PubMed Central  Google Scholar 

  80. McCarrey, J. R. Nucleotide sequence of the promoter region of a tissue-specific human retroposon: comparison with its housekeeping progenitor.Gene61, 291–298 (1987).

    Article CAS PubMed  Google Scholar 

  81. McCarrey, J. R. Molecular evolution of the human Pgk-2 retroposon.Nucleic Acids Res.18, 949–955 (1990).

    Article CAS PubMed PubMed Central  Google Scholar 

  82. McCarrey, J. R. Evolution of tissue-specific gene expression in mammals: how a new phosphoglycerate kinase was formed and refined.BioScience44, 20–27 (1994).

    Article  Google Scholar 

  83. Pan, Y., Decker, W. K., Huq, A. H. & Craigen, W. J. Retrotransposition of glycerol kinase-related genes from the X chromosome to autosomes: functional and evolutionary aspects.Genomics59, 282–290 (1999).

    Article CAS PubMed  Google Scholar 

  84. Elliott, D. J. et al. An evolutionarily conserved germ cell-specific hnRNP is encoded by a retrotransposed gene.Hum. Mol. Genet.9, 2117–2124 (2000).

    Article CAS PubMed  Google Scholar 

  85. Betrán, E., Thornton, K. & Long, M. Retroposed new genes out of the X inDrosophila.Genome Res.12, 1854–1859 (2002).

    Article PubMed PubMed Central CAS  Google Scholar 

  86. Kaminker, J. S. et al. The transposable elements of theDrosophila melanogaster euchromatin: a genomics perspective.Genome Biol.3, 0084 (2002).

    Article  Google Scholar 

  87. Swanson, W. J., Clark, A. G., Waldrip-Dail, H. M., Wolfner, M. F. & Aquadro, C. F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins inDrosophila.Proc. Natl Acad. Sci. USA98, 7375–7379 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation.Nature Rev. Genet.2, 59–67 (2001).

    Article CAS PubMed  Google Scholar 

  89. Franke, A. & Baker, B. S. Dosage compensation rox!Curr. Opin. Cell Biol.12, 351–354 (2000).

    Article CAS PubMed  Google Scholar 

  90. Richler, C. et al. Splicing components are excluded from the transcriptionally inactive XY body in male meiotic nuclei.Mol. Biol. Cell5, 1341–1352 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Wu, C -I. & Xu, E. Y. Sexual antagonism and X inactivation — the SAXI hypothesis.Trends Genet.19, 243–247 (2003).

    Article CAS PubMed  Google Scholar 

  92. Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia.Nature Genet.27, 422–426 (2001).

    Article PubMed CAS  Google Scholar 

  93. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism.Evolution38, 735–742 (1984).

    Article PubMed  Google Scholar 

  94. Parisi, M. et al. Paucity of genes on theDrosophila X chromosome showing male-biased expression.Science299, 697–700 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of theDrosophila transcriptome.Science300, 1742–1745 (2003).

    Article CAS PubMed  Google Scholar 

  96. Reinke, V. et al. A global profile of germline gene expression inC. elegans.Mol. Cell6, 605–616 (2000).

    Article CAS PubMed  Google Scholar 

  97. Kelly, W. G. et al. X-chromosome silencing in the germline ofC. elegans.Development129, 479–492 (2002).

    CAS PubMed  Google Scholar 

  98. Langley, C. H., Montgomery, E. & Quattlebaum, W. F. Restriction map variation in theAdh region ofDrosophila.Proc. Natl Acad. Sci. USA79, 5631–5635 (1982).

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Jeffs, P. & Ashburner, M. Processed pseudogenes inDrosophila.Proc. R. Soc. Lond. B244, 151–159 (1991).

    Article CAS  Google Scholar 

  100. Wang, W., Zhang, J., Alvarez, C., Llopart, A. & Long, M. The origin of theJingwei gene and the complex modular structure of its parental gene, yellow emperor, inDrosophila melanogaster.Mol. Biol. Evol.17, 1294–1301 (2000).

    Article CAS PubMed  Google Scholar 

  101. Long, M., Wang, W. & Zhang, J. Origin of new genes and source for N-terminal domain of the chimerical gene,jingwei, inDrosophila.Gene238, 135–141 (1999).

    Article CAS PubMed  Google Scholar 

  102. Petrov, D. A., Lozovskaya, E. R. & Hartl, D. L. High intrinsic rate of DNA loss inDrosophila.Nature384, 346–349 (1996).

    Article CAS PubMed  Google Scholar 

  103. Weiner, A. M., Deininger, P. L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information.Annu. Rev. Biochem.55, 631–661 (1986).

    Article CAS PubMed  Google Scholar 

  104. Brosius, J. Retroposons — seeds of evolution.Science251, 753 (1991).

    Article CAS PubMed  Google Scholar 

  105. Javaud, C., Dupuy, F., Maftah, A., Julien, R. & Petit, J -M. The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution.Genetica118, 157–170 (2003).

    Article CAS PubMed  Google Scholar 

  106. Hughes, A.Adaptive Evolution of Genes and Genomes, (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  107. Courseaux, A. & Nahon, J. L. Birth of two chimeric genes in the Hominidae lineage.Science291, 1293–1297 (2001).This paper reported two chimeric genes —PMCHL1 and very youngPMCHL2 — in Hominidae, which showed that an intron-containing gene structure can be retroposed to another genomic location.

    Article CAS PubMed  Google Scholar 

  108. Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Jr. Transduction of 3′-flanking sequences is common in L1 retrotransposition.Hum. Mol. Genet.9, 653–657 (2000).

    Article CAS PubMed  Google Scholar 

  109. Brosius, J. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements.Gene238, 115–134 (1999).

    Article CAS PubMed  Google Scholar 

  110. Brosius, J. The contribution of RNAs and retroposition to evolutionary novelties.Genetica118, 99–116 (2003).

    Article CAS PubMed  Google Scholar 

  111. Makalowski, W. Genomic scrap yard: how genomes utilize all that junk.Gene259, 61–67 (2000).

    Article CAS PubMed  Google Scholar 

  112. Lorenc, A. & Makalowski, W. Transposable elements and vertebrate protein diversity.Genetica118, 183–191 (2003).

    Article CAS PubMed  Google Scholar 

  113. Ragan, M. A. On surrogate methods for detecting lateral gene transfer.FEMS Microbiol. Lett.201, 187–191 (2001).

    Article CAS PubMed  Google Scholar 

  114. McCarthy, A. D. & Hardie, D. G. Fatty acid synthase — an example of protein evolution by gene fusion.Trends Biochem. Sci.4, 60–63 (1984).

    Article  Google Scholar 

  115. Snel, B., Bork, P. & Huynen, M. Gene fusion versus gene fission.Trends Genet.16, 9–11 (2000).

    Article CAS PubMed  Google Scholar 

  116. Martignetti, J. A. & Brosius, J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent.Proc. Natl Acad. Sci. USA90, 9698–9702 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  117. Martignetti, J. A. & Brosius, J. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element.Proc. Natl Acad. Sci. USA90, 11563–11567 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  118. Zhang, J., Webb, D. M. & Podlaha, O. Accelerated protein evolution and origins of human-specific features: Foxp2 as an example.Genetics162, 1825–1835 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  119. Enard, W. et al. Molecular evolution ofFOXP2, a gene involved in speech and language.Nature418, 869–872 (2002).

    Article CAS PubMed  Google Scholar 

  120. Brosius, J. & Gould, S. J. On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”.Proc. Natl Acad. Sci. USA89, 10706–10710 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  121. Gogolevskaya, I. K. & Kramerov, D. A. Evolutionary history of 4.5SI RNA and indication that it is functional.J. Mol. Evol.54, 354–364 (2002).

    Article CAS PubMed  Google Scholar 

  122. Long, M. Protein-coding segments: evolution of exon–intron gene structure. Nature Encyclopedia of Life Sciences [online], <http://www.els.net> (doi:10.1038/npg.els.0000887) (2000).

Download references

Acknowledgements

We thank J. Sporfford, J. Zhang and the referees for their helpful suggestions. We also thank all members of the M.L. laboratory, past and present, for their devoted contributions to the studies on the origin of new genes and their evolution. M.L. is funded by a David and Lucile Packard Foundation Fellowship, a National Science Foundation CAREER Award and a National Institutes of Health grant.

Author information

Authors and Affiliations

  1. Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, 60637, Illinois, USA

    Manyuan Long

  2. Committee on Genetics, The University of Chicago, 920 East 58th Street, Chicago, 60637, Illinois, USA

    Manyuan Long & Kevin Thornton

  3. Biology Department, University of Texas, Arlington, 76019, Texas, USA

    Esther Betrán

  4. Chinese Academy of Sciences (CAS)–Max Planck Junior Scientist Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, CAS, Kunming, 650223, China

    Wen Wang

Authors
  1. Manyuan Long
  2. Esther Betrán
  3. Kevin Thornton
  4. Wen Wang

Corresponding author

Correspondence toManyuan Long.

Glossary

NEW GENE

A gene that has originated recently in the relevant evolutionary timescale.

ECTOPIC RECOMBINATION

Recombination between nonhomologous sequences.

ILLEGITIMATE RECOMBINATION

Nonhomologous sequence recombination at the genomic DNA level.

L1 RETRO-ELEMENT

A member of the long interspersed transposable element (LINE) family, which is a type of large repetitive DNA sequence that inserts itself throughout the genome through retroposition. L1 retro-elements are6,400 base pairs long and are abundant in the human genome.

ALU ELEMENT

An interspersed DNA sequence of300 base pairs (bp) that is found in the genomes of primates, which can be cleaved by the restriction enzymeAluI. They are composed of a head-to-tail dimer, with the first monomer140-bp long and the second170-bp long. In humans, there are 300,000–600,000 copies of Alu elements.

MOBILE ELEMENTS

Also known as transposable elements. DNA sequences in the genome that replicate and insert themselves into various positions in the genome.

SUBFUNCTIONALIZATION

The process of 'partitioning' the ancestral functions of a locus among its duplicates. For example, if a single-copy gene that is normally expressed in two tissues subsequently duplicates, and each duplicate is then expressed in a different tissue, subfunctionalization has occurred.

NEOFUNCTIONALIZATION

The evolution of a new function by a duplicate gene.

PURIFYING SELECTION

Selection against deleterious alleles.

REPLACEMENT CHANGES

(Substitutions). Changes in the nucleotide sequences of coding genes that result in changes in the peptide sequence (that is, the replacement of an amino acid). These contrast with silent (or synonymous) changes in coding sequences, which do not result in changes in the peptide.

ADAPTIVE EVOLUTION

An evolutionary process that is directed by natural selection, which makes a population better adapted to live in an environment.

KA/KS

KA is the rate of substitution at non-synonymous sites andKS is the rate of substitution at synonymous sites. The ratio between the two (KA/KS) is often used to infer selection: aKA/KS that is <1 indicates a functional constraint; aKA/KS that is equal to 1 indicates a lack of functional constraint; and aKA/KS that is >1 indicates positive Darwinian selection.

POPULATION GENETIC ANALYSIS

The process of making inferences about the evolutionary and demographic history of a gene (or organism) on the basis of data on genetic variation in a species.

SELECTIVE CONSTRAINT

A limit on evolutionary change.

MCDONALD-KREITMAN TEST

A statistical test that is commonly used for the comparison of between-species divergence and within-species polymorphism at replacement and synonymous sites to infer adaptive protein evolution.

CONVERGENT EVOLUTION

Independent evolution from different ancestors that leads to similar characteristics.

NOTOTHENIOID

The most abundant group of Antarctic fish.

TRYPSINOGEN

A large diverse protein family of serine peptidases.

INTRON PHASE

The relative position of an intron within or between codons. Phase zero, one and two are defined by the position of an intron between two codons or after the first or second nucleotide of a codon, respectively.

GERMLINE INACTIVATION

The early inactivation of the sex chromosomes in germline cells in the heterogametic sex.

DOSAGE COMPENSATION

The phenomenon whereby the expression levels of sex-linked genes are made equal in males and females of heterogametic species.

XIST TRANSCRIPT

A non-coding RNA that is transcribed by an X-linked gene known asXist (X-inactive-specific transcription), which has a role in the somatic transcriptional inactivation of one X chromosome in female mammals. This is believed to occur through the interaction of transcripts fromXist and the related geneTsix.

Rights and permissions

About this article

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp