- Review Article
- Published:
Drug development from marine natural products
Nature Reviews Drug Discoveryvolume 8, pages69–85 (2009)Cite this article
15kAccesses
25Altmetric
Key Points
The large-scale collection, screening and discovery of novel marine natural products has propelled new chemical entities into the clinic for the treatment of pain, cancer and other disease states.
What is the status of discovery of 'drugs from the sea' and what hope do they offer for the alleviation of human suffering? The first two new drugs derived from marine organisms have now been approved — one for cancer and the other for chronic pain.
Other natural-product-inspired drugs, such as the anticancer compound eribulin mesylate, are in the pipeline.
We present the history and current stage of development for a selection of marine natural products, and examine the obstacles in their development into drugs.
We also discuss how new technologies in analytical sciences and 'genomic mining' are accelerating the pace of discovery.
Abstract
Drug discovery from marine natural products has enjoyed a renaissance in the past few years. Ziconotide (Prialt; Elan Pharmaceuticals), a peptide originally discovered in a tropical cone snail, was the first marine-derived compound to be approved in the United States in December 2004 for the treatment of pain. Then, in October 2007, trabectedin (Yondelis; PharmaMar) became the first marine anticancer drug to be approved in the European Union. Here, we review the history of drug discovery from marine natural products, and by describing selected examples, we examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials. Providing an outlook into the future, we also examine the advances that may further expand the promise of drugs from the sea.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Freudenthal, H. D.Transactions of the Drugs from the Sea Symposium, University of Rhode Island, 27–29 August 1967 1–297 (Marine Technology Society, Washington, DC, 1968).
Newman D. J. & Cragg G. M. Marine natural products and related compounds in clinical and advanced preclinical trials.J. Nat. Prod.67, 1216–1238 (2004).
Newman D. J. & Cragg G. M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.70, 461–477 (2007).
Newman, D. J. & Cragg, G. M. inMarine Anticancer Compounds in the Era of Targeted therapies 1st edn (ed. Chapner, B.) (Permanyer Publications, Barcelona, 2008).
Bergmann, W. & Feeney R. J. Contributions to the study of marine products. XXXII. The nucleosides of sponges. I.J. Org. Chem.16, 981–987 (1951).
Bergmann, W. & Burke, D. C. Contributions to the study of marine products. XL. The nucleosides of sponges. IV. Spongosine.J. Org. Chem.22, 226–228 (1956).
Bergmann, W. & Stempien, M. F. Contributions to the study of marine products. XLIII. The nucleosides of sponges. V. The synthesis of spongosine.J. Org. Chem.22, 1575–1557 (1957).
Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery.Nature Rev. Drug Discovery4, 206–220 (2004).This important, prescient review from scientists in a large pharmaceutical drug discovery programme presents the technical and logistical challenges for natural products discovery.
Jarvis, L. M. Liquid gold mine.Chem. Engin. News85, 22–28 (2007).
Mendola, D. inDrugs from the Sea (ed. Fusetani, N.) 120–133 (Karger, Basel, 2000).
Olivera, B. M. et al. Peptide neurotoxins from fish-hunting cone snails.Science230, 1338–1343 (1985).
Terlau, H. & Olivera, B. M.Conus venoms: a rich source of novel ion channel-targeted peptides.Physiol. Rev.84, 41–68 (2004).
Olivera, B. M., Miljanich, G. P., Ramachandran, J. & Adams, M. E. Calcium-channel diversity and neurotransmitter release — the ω-conotoxins and ω-agatoxins.Ann. Rev. Biochem.63, 823–867 (1994).
Chung, D., Gaur, S., Bell, J. R., Ramachandran, J. & Nadasdi, L. Determination of disulfide bridge pattern in ω-conopeptides.Int. J. Pept. Protein Res.46, 320–325 (1995).
Price-Carter, M., Hull, M. S. & Goldenberg, D. P. Roles of individual disulfide bonds in the stability and folding of an ω-conotoxin.Biochemistry37, 9851–9861 (1998).
Olivera, B. M. et al. Neuronal calcium-channel antagonists — discrimination between calcium-channel subtypes using ω-conotoxin fromConus magus venom.Biochemistry26, 2086–2090 (1987).
Yeager, R. E., Yoshikami, D., Rivier, J., Cruz, L. J. & Miljanich, G. P. Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist ωConus toxin.J. Neurosci.7, 2390–2396 (1987).
Atkinson, R. A., Kieffer, B., Dejaegere, A., Sirockin, F. & Lefevre, J. F. Structural and dynamic characterization of ω -conotoxin MVIIA: the binding loop exhibits slow conformational exchange.Biochemistry39, 3908–3919 (2000).
Kim, J. I., Takahashi, M., Ohtake, A., Wakamiya, A. & Sato, K. Tyr13 Is essential for the activity of ω -conotoxin MVIIA and GVIA, specific N-type calcium channel blockers.Biochem. Biophys. Res. Commun.206, 449–454 (1995).
Gohil, K., Bell, J. R., Ramachandran, J. & Miljanich, G. P. Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium-channel antagonist, SNX-230 (ω -conopeptide MVIIC).Brain Res.653, 258–266 (1994).
Bowersox, S. S. et al. Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain.J. Pharmacol. Exp. Ther.279, 1243–1249 (1996).
Kristipati, R. et al. Characterization of the binding of ω -conopeptides to different classes of non-L-type neuronal calcium channels.Mol. Cell. Neurosci.5, 219–228 (1994).
Jones, R. M. et al. Composition and therapeutic utility of conotoxins from genusConus. Patent status 1996–2000Exp. Opin. Ther. Patents11, 603–623 (2001).
Bowersox, S. S. & Luther, R. Pharmacotherapeutic potential of ω-conotoxin MVIIA (SNX-111), an N-type neuronal calcium channel blocker found in the venom ofConus magus.Toxicon36, 1651–1658 (1998).
Wang, Y. X., Pettus, M., Gao, D., Phillips, C. & Scott Bowersox, S. Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain.Pain84, 151–158 (2000).
Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain.Curr. Med. Chem.11, 3029–3040 (2004).
Garber, K. Peptide leads new class of chronic pain drugs.Nature Biotech.23, 399 (2005).
Heading, C. E.Conus toxins: targets and properties.IDrugs7, 1011–1016 (2004).
Sigel, M. M. et al. inFood–Drugs from the Sea: Proceedings (ed. Youngken, H. W. Jr) 281–294 (Marine Technology Society, Washington, DC, 1969).
Rinehart, K. L. et al. Ecteinascidin-729, Ecteinascidin-743, Ecteinascidin-745, Ecteinascidin-759a, Ecteinascidin-759b, and Ecteinascidin-770 — potent antitumor agents from the Caribbean tunicateEcteinascidia turbinata.J. Org. Chem.55, 4512–4515 (1990).
Wright, A. E. et al. Antitumor tetrahyrodisoquinoline alkaloids from the colonial ascidianEcteinascidia turbinata.J. Org. Chem.55, 4508–4512 (1990).
Sakai, R., Rinehart, K. L., Guan, Y. & Wang, A. H. Additional antitumor ecteinascidins from a Caribbean tunicate: crystal structures and activitiesin vivo.Proc. Nat. Acad. Sci. USA89, 11456–11460 (1992).
Corey, E. J., Gin, D. Y. & Kania, R. S. Enantioselective total synthesis of ecteinascidin 743.J. Am. Chem. Soc.118, 9202–9203 (1996).
Martinez, E. J. & Corey, E. J. A new, more efficient, and effective process for the synthesis of a key pentacyclic intermediate for production of ecteinascidin and phthalascidin antitumor agents.Org. Lett.2, 993–996 (2000).
Cuevas, C. et al. Synthesis of ecteinascidin ET-743 and Phthalascidin Pt-650 from cyanosafracin B.Org. Lett.2, 2545–2548 (2000).
Aune, G. J., Furuta, T. & Pommier, Y. Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action.Anticancer Drugs13, 545–555 (2002).
Pommier, Y. et al. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicateEcteinascidia turbinata.Biochemistry35, 13303–13309 (1996).
Zewail-Foote, M. & Hurley, L. H. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove.J. Med. Chem.42, 2493–2497 (1999).
Zewail-Foote, M. et al. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent.Chem. Biol.8, 1033–1049 (2001).
Takebayashi, Y. et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair.Nature Med.7, 961–966 (2001).An excellent technical paper describing the excision repair inhibition mechanism that is unique to ET-743.
Di Leo, P. et al. Final results of a phase II trial of 3-HR infusion trabectedin in patients with recurrent sarcomas.Ann. Oncol.17, 167–167 (2006).
Paz-Ares, L. et al. Phase II study of trabectedin in pretreated patients with advanced colorectal cancer.Clin. Colorectal Cancer6, 522–528 (2007).
Zelek, L. et al. A phase II study of Yondelis® (trabectedin, ET-743) as a 24-h continuous intravenous infusion in pretreated advanced breast cancerBr. J. Cancer94, 1610–1614 (2006).
Sessa, C. et al. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails.J. Clin. Oncol.23, 1867–1874 (2005).
Yovine, A. et al. Phase II study of ecteinascidin-743 in advanced pretreated soft tissue sarcoma patients.J. Clin. Oncol.22, 890–899 (2004).
Jimeno, J. et al. Therapeutic impact of ET-743 (Yondelis; trabectidin), a new marine-derived compound, in sarcoma.Curr. Op. Orthopaed.14, 419–428 (2003).
Jimeno, J. et al. Progress in the clinical development of new marine-derived anticancer compounds.Anticancer Drugs15, 321–329 (2004).
Ryan, D. P. et al. A phase II and pharmacokinetic study of ecteinascidin 743 in patients with gastrointestinal stromal tumors.Oncologist7, 531–538 (2002).
Blay, J. Y. et al. A phase II study of ET-743/trabectedin ('Yondelis') for patients with advanced gastrointestinal stromal tumours.Eur. J. Cancer40, 1327–1331 (2004).
Meco, D. et al. Effective combination of ET-743 and doxorubicin in sarcoma: preclinical studies.Cancer Chemother. Pharmacol.52, 131–138 (2003).
Takahashi, N., Li, W. W., Banerjee, D., Scotto, K. W. & Bertino, J. R. Sequence-dependent enhancement of cytotoxicity produced by ecteinascidin 743 (ET-743) with doxorubicin or paclitaxel in soft tissue sarcoma cells.Clin. Canc. Res.7, 3251–3257 (2001).
Riccardi, A. et al. Combination of trabectedin and irinotecan is highly effective in a human rhabdomyosarcoma xenograft.Anticancer Drugs16, 811–815 (2005).
Brandon, E. F. A. et al.In-vitro cytotoxicity of ET-743 (Trabectedin, Yondelis), a marine anti-cancer drug, in the Hep G2 cell line: influence of cytochrome P450 and phase II inhibition, and cytochrome P450 induction.Anticancer Drugs16, 935–943 (2005).
Donald, S. et al. Comparison of four modulators of drug metabolism as protectants against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the female rat and in hepatocytesin vitro.Cancer Chemother. Pharmacol.53, 305–312 (2004).
Donald, S. et al. Complete protection by high-dose dexamethasone against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the rat.Cancer Res.63, 5902–5908 (2003).
Beumer, J. H., Schellens, J. H. & Beijnen, J. H. Hepatotoxicity and metabolism of trabectedin: a literature review.Pharmacol. Res.51, 391–398 (2005).
Chun, H. G. et al. Didemnin B. The first marine compound entering clinical trials as an antineoplastic agent.Invest. New Drugs4, 279–284 (1986).
Vera, M. D. & Joullie, M. M. Natural products as probes of cell biology: 20 years of didemnin research.Med. Res. Rev.22, 102–145 (2002).
Rinehart, K. Antitumor Compounds from Tunicates.Med. Res. Rev.1, 1–27 (2003).
Rinehart, K. L. Jr., Gloer, J. B., Cook, J. C., Mizsak, S. A. & Scahill, T. A. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Carribean tunicate.J. Am. Chem. Soc.103, 1857–1859 (1981).
Rinehart, K. L. Jr et al. Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate.Science212, 933–935 (1981).
Rinehart, K. L. Jr et al. Total synthesis of didemnins A, B, and C.J. Am. Chem. Soc.109, 6856–6848 (1987).
McKee, T. C., Ireland, C. M., Lindquist, N. & Fenical, W. The complete spectral assignment of didemnin B and nordidemnin B.Tetrahedron Lett.30, 3053–3056 (1989).
Gloer, J. B.Structures of the Didemnins. Thesis, Univ. Illinois (1983).
Hossain, M. B. et al. Crystal and molecular structure of didemnin B, an antiviral and cytotoxic depsipeptide.Proc. Natl Acad. Sci. USA85, 4118–4122 (1988).
Meng, L., Sin, N. & Crews, C. M. The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase.Biochemistry37, 10488–10492 (1998).
Crews, C. M., Lane, W. S. & Schreiber, S. L. Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis.Proc. Natl Acad. Sci. USA93, 4316–4319 (1996).
Li, L. H. et al. Mechanism of action of didemnin B, a depsipeptide from the sea.Cancer Lett.23, 279–288 (1984).
SirDeshpande, B. V. & Toogood, P. L. Mechanism of protein synthesis inhibition by didemnin Bin vitro.Biochemistry34, 9177–9184 (1995).
Ahuja, D. et al. Inhibition of protein synthesis by didemnin B: how EF-1a mediates inhibition of translocation.Biochemistry39, 4339–4346 (2000).
Marco, E., Martin-Santamaria, S., Cuevas, C. & Gago, F. Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products.J. Med. Chem.47, 4439–4452 (2004).
Crews, C. M., Collins, J. L., Lane, W. S., Snapper, M. L. & Schreiber, S. L. GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 α.J. Biol. Chem.269, 15411–15414 (1994).Illustrates the 'chemical biological' approach to the identification of protein targets of natural product drugs, and the importance of discriminating high- and low-affinity binding partners (see also reference67)
Beidler, D. R., Ahuja, D., Wicha, M. S. & Toogood, P. L. Inhibition of protein synthesis by didemnin B is not sufficient to induce apoptosis in human mammary carcinoma (MCF7) cells.Biochem. Pharmacol.58, 1067–1074 (1999).
Erba, E. et al. Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine.Br. J. Cancer86, 1510–1517 (2002).
Johnson, K. L., Vaillant, F. & Lawen, A. Protein tyrosine kinase inhibitors prevent didemnin B-induced apoptosis in HL-60 cells.FEBS Lett.383, 1–5 (1996).
Johnson, K. L. & Lawen, A. Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells: evidence for the possible involvement of FK506-binding protein 25.Immunol. Cell Biol.77, 242–248 (1999).
Weed, S. D. & Stringfellow, D. A. Didemnins A and B. Effectiveness against cutaneous herpes simplex virus in mice.Antiviral Res.3, 269–274 (1983).
Urdiales, J. L., Morata, P., Nunez De Castro, I. & Sanchez-Jimenez, F. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates.Cancer Lett.102, 31–37 (1996).
Dorr, F. A., Kuhn, J. G., Phillips, J. & von Hoff, D. D. Phase I clinical and pharmacokinetic investigation of didemnin B, a cyclic depsipeptide.Eur. J. Cancer Clin. Oncol.24, 1699–1706 (1988).
Scheithauer, W., Moyer, M. P., Clark, G. M. & Von Hoff, D. D. Application of a new preclinical drug screening system for cancer of the large bowel.Cancer Chemother. Pharmacol.21, 31–34 (1988).
Grubb, D. R., Wolvetang, E. J. & Lawen, A. Didemnin B induces cell death by apoptosis: the fastest induction of apoptosis ever described.Biochem. Biophys. Res. Commun.215, 1130–1136 (1995).
Geldof, A. A., Mastbergen, S. C., Henrar, R. E. & Faircloth, G. T. Cytotoxicity and neurocytotoxicity of new marine anticancer agents evaluated usingin vitro assays.Cancer Chemother. Pharmacol.44, 312–318 (1999).
Stewart, J. A., Low, J. B., Roberts, J. D. & Blow, A. A phase I clinical trial of didemnin B.Cancer68, 2550–2554 (1991).
Maroun, J. A., Stewart, D., Verma, S. & Eisenhauer, E. Phase I clinical study of didemnin B.Invest. New Drugs16, 51–56 (1998).
Shin, D. M. et al. Phase I/II clinical trial of didemnin B in non-small-cell lung cancer: neuromuscular toxicity is dose-limiting.Cancer Chemother. Pharmacol.29, 145–149 (1991).
Benvenuto, J. A. et al. Phase II clinical and pharmacological study of didemnin B in patients with metastatic breast cancer.Invest. New Drugs10, 113–117 (1992).
Shin, D. M. et al. Phase II clinical trial of didemnin B in previously treated small cell lung cancer.Invest. New Drugs12, 243–249 (1994).
Goss, G. et al. Didemnin B in favorable histology non-Hodgkin's lymphoma: a phase II study of the National Cancer Institute of Canada Clinical Trials Group.Invest. New Drugs13, 257–260 (1995).
Kucuk, O. et al. Phase II trail of didemnin B in previously treated non-Hodgkin's lymphoma: an Eastern Cooperative Oncology Group (ECOG) Study.Am. J. Clin. Oncol.23, 273–277 (2000).
Hochster, H., Oratz, R., Ettinger, D. S. & Borden, E. A phase II study of Didemnin B (NSC 325319) in advanced malignant melanoma: an Eastern Cooperative Oncology Group study (PB687).Invest. New Drugs16, 259–263 (1999).
Mittelman, A. et al. Phase II clinical trial of didemnin B in patients with recurrent or refractory anaplastic astrocytoma or glioblastoma multiforme (NSC 325319).Invest. New Drugs17, 179–182 (1999).
Taylor, S. A. et al. Phase II study of didemnin B in central nervous system tumors: a Southwest Oncology Group study.Invest. New Drugs16, 331–332 (1999).
Nuijen, B. et al. Pharmaceutical development of anticancer agents from marine sources.Anticancer Drugs11, 793–811 (2000).
Rinehart, K. L. & Lithgow-Bertelloni, A. M. Dehydrodidemnin B. WO9104985 (A1) (1991).
Garcia-Fernandez, L. F. et al. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C.Oncogene21, 7533–7544 (2002).
Gajate, C., An, F. & Mollinedo, F. Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism.Clin. Cancer Res.9, 1535–1545 (2003).
Grubb, D. R., Ly, J. D., Vaillant, F., Johnson, K. L. & Lawen, A. Mitochondrial cytochromec release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis.Oncogene20, 4085–4094 (2001).
Cuadrado, A. et al. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK.J. Biol. Chem.278, 241–250 (2003).
Cuadrado, A., Gonzalez, L., Suarez, Y., Martinez, T. & Munoz, A. JNK activation is critical for Aplidin-induced apoptosis.Oncogene23, 4673–4680 (2004).
Broggini, M. et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF–VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4.Leukemia17, 52–59 (2003).
Biscardi, M. et al. VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia.Ann. Oncol.16, 1667–1674 (2005).
Losada, A., Lopez-Oliva, J. M., Sanchez-Puelles, J. M. & Garcia-Fernandez, L. F. Establishment and characterisation of a human carcinoma cell line with acquired resistance to Aplidin.Br. J. Cancer91, 1405–1413 (2004).
Erba, E. et al. Effect of aplidine in acute lymphoblastic leukaemia cells.Br. J. Cancer89, 763–773 (2003).
Albella, B. et al.In vitro toxicity of ET-743 and aplidine, two marine-derived antineoplastics, on human bone marrow haematopoietic progenitors. comparison with the clinical results.Eur. J. Cancer38, 1395–1404 (2002).
Baker, M. A., Grubb, D. R. & Lawen, A. Didemnin B induces apoptosis in proliferating but not resting peripheral blood mononuclear cells.Apoptosis7, 407–412 (2002).
Bresters, D. et al.In vitro cytotoxicity of aplidin and crossresistance with other cytotoxic drugs in childhood leukemic and normal bone marrow and blood samples: a rational basis for clinical development.Leukemia17, 1338–1343 (2003).
Gomez, S. G., Bueren, J. A., Faircloth, G. T., Jimeno, J. & Albella, B.In vitro toxicity of three new antitumoral drugs (trabectedin, aplidin, and kahalalide F) on hematopoietic progenitors and stem cells.Exp. Hematol.31, 1104–1111 (2003).
Taraboletti, G. et al. Antiangiogenic activity of aplidine, a new agent of marine origin.Br. J. Cancer90, 2418–2424 (2004).
Perez, M., Sadqi, M., Munoz, V. & Avila, J. Inhibition by Aplidine of the aggregation of the prion peptide PrP 106–126 into β-sheet fibrils.Biochem. Biophys. Acta1639, 133–139 (2003).
Talpir, R., Benayahu, Y., Kashman, Y., Pannell, L. & Schleyer, M. Hemiasterlin and geodiamolide TA: two new cytotoxic peptides from the marine spongeHemiasterella minor (Kirkpatrick).Tetrahedron Lett.35, 4453–4456 (1994).
Coleman, J. E., de Silva, E. D., Kong, F., Andersen, R. J. & Allen, T. M. Cytotoxic peptides from the marine spongeCymbastela sp.Tetrahedron51, 10653–10662 (1995).
Coleman, J. E., Patrick, B. O., Andersen, R. J. & Rettig, S. J. Hemiasterlin methyl ester.Acta Cryst. Sec. CC52, 1525–1527 (1996).
Gamble, W. R. et al. Cytotoxic and tubulin-interactive hemiasterlins fromAuletta sp. andSiphonochalina spp. sponges.Bioorg. Med. Chem.7, 1611–1615 (1999).
Anderson, H. J., Coleman, J. E., Andersen, R. J. & Roberge, M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation.Cancer Chemother. Pharmacol.39, 223–226 (1997).
Bai, R., Durso, N. A., Sackett, D. L. & Hamel, E. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1.Biochemistry38, 14302–14310 (1999).
Nieman, J. A. et al. Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues.J. Nat. Prod.66, 183–199 (2003).
Zask, A. et al. Synthesis and biological activity of analogues of the antimicrotubule agentN,β,β-trimethyl-L-phenylalanyl-N1-[(1S,2E)-3-carboxy-1-isopropylbut-2-enyl]-N1,3-dimethyl-L-valinamide(HTI-286).J. Med. Chem.47, 4774–4786 (2004).
Zask, A. et al. D-piece modifications of the hemiasterlin analog HTI-286 produce potent tubulin inhibitors.Bioorg. Med. Chem. Lett.14, 4353–4358 (2004).
Yamashita, A. et al. Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment.Bioorg. Med. Chem. Lett.14, 5317–5322 (2004).
Niu, C. et al. Tubulin inhibitors. Synthesis and biological activity of HTI-286 analogs with B-segment heterosubstituents.Bioorg. Med. Chem. Lett.14, 4329–4332 (2004).
Lo, M. C. et al. Probing the interaction of HTI-286 with tubulin using a stilbene analogue.J. Am. Chem. Soc.126, 9898–9899 (2004).
Krishnamurthy, G. et al. Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubules.Biochemistry42, 13484–13495 (2003).
Mitra, A. & Sept, D. Localization of the antimitotic peptide and depsipeptide binding site on β-tubulin.Biochemistry43, 13955–13962 (2004).
Nunes, M. et al. Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label α-tubulin.Biochemistry44, 6844–6857 (2005).
Poruchynsky, M. S. et al. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analogue, HTI-286, have mutations in α- or β-tubulin and increased microtubule stability.Biochemistry43, 13944–13954 (2004).
Loganzo, F. et al. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin.Mol. CancerTher.3, 1319–1327 (2004).
Loganzo, F. et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistancein vitro andin vivo.Cancer Res.63, 1838–1845 (2003).
Ratain M. J. et al. Phase 1 and pharmacological study of HTI-286, a novel antimicrotubule agent: correlation of neutropenia with time above a threshold serum concentration.Proc. Am. Soc. Clin. Oncol.22, 516 (2003).
Hadaschik, B. A. et al. Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlinInt. J. Cancer:122, 2368–2376 (2008).
Kalesse, M. The chemistry and biology of discodermolide.ChemBiochem1, 171–175 (2000).
De Souza, M. V. (+)-discodermolide: a marine natural product against cancer.Scientific World Journal4, 415–436 (2004).
Longley, R. E., Caddigan, D., Harmody, D., Gunasekera, M. & Gunasekera, S. P. Discodermolide — a new, marine-derived immunosuppressive compound. I.In vitro studies.Transplantation52, 650–656 (1991).
Longley, R. E., Caddigan, D., Harmody, D., Gunasekera, M. & Gunasekera, S. P. Discodermolide — a new, marine-derived immunosuppressive compound. II.In vivo studies.Transplantation52, 656–661 (1991).
Longley, R. E., Gunasekera, S. P., Faherty, D., McLane, J. & Dumont, F. Immunosuppression by discodermolide.Ann. NY Acad. Sci.696, 94–107 (1993).
Gunasekera, S. P., Gunasekera, M., Longley, R. E. & Schulte, G. K. Discodermolide: a new bioactive polyhydroxylated lactone from the marine spongeDiscodermia dissoluta.J. Org. Chem.55, 4912–4915 (1990).
Gunasekera, S. P., Gunasekera, M., Longley, R. E. & Schulte, G. K. Discodermolide: a new bioactive polyhydroxylated lactone from the marine spongeDiscodermia dissoluta [Erratum to document cited in CA113(9):75187b].J. Org. Chem.56, 1346 (1991).
Nerenberg, J. B., Hung, D. T., Somers, P. K. & Schreiber, S. L. Total synthesis of the immunosuppressive agent (−)-discodermolide.J. Am. Chem. Soc.115, 12621–12622 (1993).
Hung, D. T., Nerenberg, J. B. & Schreiber, S. L. Distinct binding and cellular properties of synthetic (+)- and (−)-discodermolides.Chem. Biol.1, 67–71 (1994).A good example of enantioselective bioactivity of natural and unnatural antipodes of marine-derived drugs.
Harried, S. S., Lee, C. P., Yang, G., Lee, T. I. & Myles, D. C. Total synthesis of the potent microtubule-stabilizing agent (+)-discodermolide.J. Org. Chem.68, 6646–6660 (2003).
Paterson, I. & Lyothier, I. Total synthesis of (+)-discodermolide: an improved endgame exploiting a Still-Gennari-type olefination with a C1-C8 β-ketophosphonate fragment.Org. Lett.6, 4933–4936 (2004).
Paterson, I. et al. A second-generation total synthesis of (+)-discodermolide: the development of a practical route using solely substrate-based stereocontrol.J. Org. Chem.70, 150–160 (2005).
Smith, A. B. 3rd, Kaufman, M. D., Beauchamp, T. J., LaMarche, M. J. & Arimoto, H. Gram-scale synthesis of (+)-discodermolide.Org. Lett.1, 1823–1826 (1999).
Smith, A. B. 3rd et al. Evolution of a gram-scale synthesis of (+)-discodermolide.J. Am. Chem. Soc.122, 8654–8664 (2000).
Smith, A. B. 3rd, Freeze, B. S., Brouard, I. & Hirose, T. A practical improvement, enhancing the large-scale synthesis of (+)-discodermolide: a third-generation approach.Org. Lett.5, 4405–4408 (2003).
Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: synthetic strategy and preparation of a common precursor.Org. Proc. Res. Dev.8, 92–100 (2004).
Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 2: synthesis of fragments C1–6 and C9–14Org. Proc. Res. Dev.8, 101–106 (2004).
Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 3: synthesis of fragment C15–21Org. Proc. Res. Dev.8, 107–112 (2004).References 145–147 describe the challenge for production, met by a tour de force multi-step, total synthesis, of a complex, rare marine-derived drug. The synthesis of 65 g of discodermolide shows what is possible when the target is highly desirable.
Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 4: preparation of fragment C7–24Org. Proc. Res. Dev.8, 113–121 (2004).
Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5: linkage of fragments C1–6 and C7–24 and finale.Org. Proc. Res. Dev.8, 122–130 (2004).
Hung, D. T., Chen, J. & Schreiber, S. L. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest.Chem. Biol.3, 287–293 (1996).
ter Haar, E. et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol.Biochemistry35, 243–250 (1996).
Kowalski, R. J. et al. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells.Mol. Pharmacol.52, 613–622 (1997).
Martello, L. A. et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines.Clin. Cancer Res.6, 1978–1987 (2000).
Giannakakou, P. & Fojo, T. Discodermolide: just another microtubule-stabilizing agent? No! A lesson in synergy.Clin. Cancer Res.6, 1613–1615 (2000).
Honore, S. et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells.Cancer Res.64, 4957–4964 (2004).
Chen, J. G. & Horwitz, S. B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs.Cancer Res.62, 1935–1938 (2002).
Broker, L. E. et al. Late activation of apoptotic pathways plays a negligible role in mediating the cytotoxic effects of discodermolide and epothilone B in non-small cell lung cancer cells.Cancer Res.62, 4081–4088 (2002).
Honore, S. et al. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation.Mol. Cancer Ther.2, 1303–1311 (2003).
Kar, S., Florence, G. J., Paterson, I. & Amos, L. A. Discodermolide interferes with the binding of tau protein to microtubules.FEBS Lett.539, 34–36 (2003).
Escuin, D., Kline, E. R. & Giannakakou, P. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function.Cancer Res.65, 9021–9028 (2005).
Klein, L. E., Freeze, B. S., Smith, A. B. & Horwitz, S. B. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence.Cell Cycle4, 501–507 (2005).
Smith, A. B. 3rd et al. Discodermolide analogues as the chemical component of combination bacteriolytic therapy.Bioorg. Med. Chem. Lett.15, 3623–3626 (2005).
Mita, A. et al. A phase I pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 wks to adult patients with advanced solid malignancies.J. Clin. Oncol.22, 2025 (2004).
Schwartz, R. E. et al. Pharmaceuticals from cultured algae.J. Ind. Microbiol.5, 113–124 (1990).
Trimurtulu, G. et al. Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green-algaNostoc sp strain Gsv-224.J. Am. Chem. Soc.116, 4729–4737 (1994).
Kobayashi, M. et al. Arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine spongeDysidea arenaria.Tetrahedron Lett.35, 7969–7972 (1994).
Barrow, R. A. et al. Total synthesis of cryptophycins — revision of the structures of cryptophycin-A and cryptophycin-C.J. Am. Chem. Soc.117, 2479–2490 (1995).
Lu, K., Dempsey, J., Schultz, R. M., Shih, C. & Teicher, B. A. Cryptophycin-induced hyperphosphorylation of Bcl-2, cell cycle arrest and growth inhibition in human H460 NSCLC cells.Cancer Chemother. Pharmacol.47, 170–178 (2001).
Mooberry, S. L., Taoka, C. R. & Busquets, L. Cryptophycin 1 binds to tubulin at a site distinct from the colchicine binding site and at a site that may overlap the vinca binding site.Cancer Lett.107, 53–57 (1996).
Kerksiek, K., Mejillano, M. R., Schwartz, R. E., George, G. I. & Himes, R. H. Interaction of cryptophycin 1 with tubulin and microtubules.FEBS Lett.377, 59–61 (1995).
Smith, C. D. & Zhang, X. Q. Mechanism of action of cryptophycin — interaction with the vinca alkaloid domain of tubulin.J. Biol. Chem.271, 6192–6198 (1996).
Panda, D., Himes, R. H., Moore, R. E., Wilson, L. & Jordan, M. A. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1.Biochemistry36, 12948–12953 (1997).
Wagner, M. M. et al.In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines.Cancer Chemother. Pharmacol.43, 115–125 (1999).
Sessa, C. et al. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule.Eur. J. Cancer38, 2388–2396 (2002).
Stevenson, J. P. et al. Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days.Clin. Cancer Res.8, 2524–2529 (2002).
Edelman, M. J. et al. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer.Lung Cancer39, 197–199 (2003).
Liang, J. et al. Cryptophycins-309, 249 and other cryptophycin analogs: Preclinical efficacy studies with mouse and human tumors.Investig. New Drugs23, 213–224 (2005).
Pettit, G. R. The dolastatins.Fortschr. Chem. Org. Naturst.70, 1–79 (1997).
Pettit, G. R. et al. The isolation and structure of a remarkable marine animal antineoplastic constituent — Dolastatin 10.J. Am. Chem. Soc.109, 6883–6885 (1987).
Pettit, G. R. Progress in the discovery of biosynthetic anticancer drugs.J. Nat. Prod.59, 812–821 (1996).
Pettit, G. R. et al. The absolute-configuration and synthesis of natural (−)-Dolastatin-10.J. Am. Chem. Soc.111, 5463–5465 (1989).
Bai, R., Pettit, G. R. & Hamel, E. Dolastatin-10, a powerful cytostatic peptide derived from a marine animal — inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain.Biochem. Pharmacol.39, 1941–1949 (1990).
Bai, R., Pettit, G. R. & Hamel, E. Binding of dolastatin-10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites.J. Biol. Chem.265, 17141–17149 (1990).
Bai, R., Friedman, S. J., Pettit, G. R. & Hamel, E. Dolastatin-15, a potent antimitotic depsipeptide derived fromDolabella auricularia: interaction with tubulin and effects on cellular microtubules.Biochem. Pharmacol.43, 2637–2645 (1992).
Verdier-Pinard, P., Kepler, J. A., Pettit, G. R. & Hamel, E. Sustained intracellular retention of dolastatin 10 causes its potent antimitotic activity.Mol. Pharmacol.57, 180–187 (2000).
Pitot, H. C. et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors.Clin. Cancer Res.5, 525–531 (1999).
Madden, T. et al. Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors.Clin. Cancer Res.6, 1293–1301 (2000).
Vaishampayan, U. et al. Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma.Clin. Cancer Res.6, 4205–4208 (2000).
Krug, L. M. et al. Phase II study of dolastatin-10 in patients with advanced non-small-cell lung cancer.Ann. Oncol.11, 227–228 (2000).
Margolin, K. et al. Dolastatin-10 in metastatic melanoma: a phase II and pharmokinetic trial of the California Cancer Consortium.Invest. New Drugs19, 335–340 (2001).
Saad, E. D. et al. Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer.Am. J. Clin. Oncol.25, 451–453 (2002).
von Mehren, M. et al. Phase II trial of dolastatin-10, a novel anti-tubulin agent, in metastatic soft tissue sarcomas.Sarcoma8, 107–111 (2004).
Perez, E. A. et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer.Invest. New Drugs23, 257–261 (2005).
Kindler, H. L. et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers.Invest. New Drugs23, 489–493 (2005).
Newman, D. J. & Cragg, G. M. Marine natural products and related compounds in clinical and advanced preclinical trials.J. Nat. Prod.67, 1216–1238 (2004).
Kobayashi, M. et al. Antitumor activity of TZT-1027, a novel dolastatin 10 derivative.Jpn. J.Cancer Res.88, 316–327 (1997).
Schoffski, P. et al. Phase I and pharmacokinetic study of TZT-1027, a novel synthetic dolastatin 10 derivative, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer.Ann. Oncol.15, 671–679 (2004).
de Jonge, M. J. et al. Phase I and pharmacokinetic study of the dolastatin 10 analogue TZT-1027, given on days 1 and 8 of a 3-week cycle in patients with advanced solid tumors.Clin. Cancer Res.11, 3806–3813 (2005).
Hashiguchi, N. et al. TZT-1027 elucidates antitumor activity through direct cytotoxicity and selective blockade of blood supply.Anticancer Res.24, 2201–2208 (2004).
Natsume, T. et al. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin.Jpn. J. Cancer Res.91, 737–747 (2000).
Hirata, Y. & Uemura, D., Halichondrins — antitumor polyether macrolides from a marine sponge.Pure App. Chem.58, 701–710 (1986).
Uemura, D. et al. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge.J. Am. Chem. Soc.107, 4796–4798 (1985).
Pettit, G. R. et al. Isolation and structure of halistatin 1 from the eastern Indian Ocean marine spongePhakellia carteri.J. Org. Chem.58, 2538–2543 (1993).
Pettit, G. R. et al. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine spongeAxinella sp.J. Med. Chem.34, 3339–3340 (1991).
Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data.J. Biol. Chem.,266, 15882–15889 (1991).
Dabydeen, D. A. et al. Comparison of the activities of the truncated halichondrin B analog NSC 707389 (E7389) with those of the parent compound and a proposed binding site on tubulin.Mol. Pharmacol.70, 1866–1875 (2006).
Aicher, T. D et al. Total synthesis of halichondrin B and norhalichondrin B.J. Am. Chem. Soc.114, 3162–3164 (1992).
Hart, J. B., Lill, R. E., Hickford, S. J. H., Blunt, J. W. & Munro, M. H. G. inDrugs from the Sea (ed. Fusetani, N.) 134–153 (Karger, Basel, 2000).
Gravalos, D. G., Lake, R., Blunt, J. W., Munro, M. H. G. & Litaudon, M. S. P. Halichondrins: cytotoxic polyether macrolides. EP0572109 (B1) (1993).
Munro, M. H. G. et al. The discovery and development of marine compounds with pharmaceutical potential.J. Biotechnol.70, 15–25 (1999).
Stamos, D. P., Sean, S. C. & Kishi, Y. New synthetic route to the C14-C38 segment of halichondrins.J. Org. Chem.62, 7552–7553 (1997).
Wang, Y., Habgood, G. J., Christ, W. J., Kishi, Y., Littlefield, B. A. & Yu, M. J. Structure–activity relationships of halichondrin B analogues: modifications at C30-C38.Bioorg. Med. Chem. Lett.,10, 1029–1032 (2000).
Littlefield, B. A. et al. Macrocyclic analogs and methods of their use and preparation. WO9965894 (A1) (1999).
Yu, M. J., Kishi, Y. & Littlefield, B. A. inAnticancer Agents from Natural Products (eds Cragg, G. M., Kingston, D. G. I. & Newman, D. J.) 241–265 (Taylor and Francis, Boca Raton, 2005).
Towle, M. J. et al.In vitro andin vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B.Cancer Res.61, 1013–1021 (2001).
Forero, J. B. et al. E7389, a novel anti-tubulin, in patients with refractory breast cancer.J. Clin. Oncol.24 (Suppl. 18), 653 (2006).
Blum, J. L. et al. Phase II study of eribulin mesylate (E7389) halichondrin B analog in patients with refractory breast cancer.J. Clin. Oncol.25 (Suppl. 18), 1034 (2007).
Spira, A. I., et al. Phase II study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced non-small cell lung cancer (NSCLC).J. Clin. Oncol.25 (Suppl. 18), 7546 (2007).
PR Newswire. Eribulin Mesylate Demonstrated Anti-Tumor Activity in Heavily Pretreated Patients With Advanced Breast Cancer.PR Newswire web site [online], <http://www.prnewswire.co.uk/cgi/news/release?id=227511> (2008).
Hamann, M. T. & Scheuer, P. J. Kahalalide F: a bioactive depsipeptide from the Sacoglossan molluskElysia rufescens and the green algaBryopsis sp.J. Am. Chem. Soc.115, 5825–5826 (1993).
Goetz, G., Yoshida, W. Y. & Scheuer, P. J. The absolute stereochemistry of kahalalide F.Tetrahedron55, 7739–7746 (1999).
Hamann, M. T., Otto, C. S., Scheuer, P. J. & Dunbar, D. C. Kahalalides: bioactive peptide from a marine molluskElysia rufescens and its algal dietBryopsis sp.J. Org. Chem.61, 6594–6600 (1996).
Minami, Y. et al. Structure of cypemycin, a new peptide antibiotic.Tetrahedron Lett.35, 8001–8004 (1994).
Neuhof, T. et al. Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacteriumHassallia sp.J. Nat. Prod.68, 695–700 (2005).
Becerro, M. A., Goetz, G., Paul, V. J. & Scheuer, P. J. Chemical defenses of the sacoglossan molluskElysia rufescens and its host algaBryopsis sp.J. Chem. Ecol.27, 2287–2299 (2001).
Lopez-Macia, A., Jimenez, J. C., Royo, M., Giraet, E. & Albericio, F. Synthesis and structure determination of kahalalide F.J. Am. Chem. Soc.123, 11398–11401 (2001).
Bonnard, I., Manzanares, I. & Rinehart, K. L. Stereochemistry of kahalalide F.J. Nat. Prod.66, 1466–1470 (2003).
Garcia-Rocha, M., Bonay, P. & Avila, J. The antitumoral compound Kahalalide F acts on cell lysosomes.Cancer Lett.99, 43–50 (1996).
Suarez, Y. et al. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells.Mol. Cancer Ther.2, 863–872 (2003).
Janmaat, M. L., Rodriguez, J. A., Jimeno, J., Kruyt, F. A. E. & Giaccone, G. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling.Mol. Pharmacol.68, 502–510 (2005).
Sewell, J. M. et al. The mechanism of action of Kahalalide F: variable cell permeability in human hepatoma cell lines.Eur. J. Cancer41, 1637–1644 (2005).
Sparidans, R. W. et al. Chemical and enzymatic stability of a cyclic depsipeptide, the novel, marine-derived, anti-cancer agent kahalalide F.Anticancer Drugs12, 575–582 (2001).
Brown, A. P., Morrissey, R. L., Faircloth, G. T. & Levine, B. S. Preclinical toxicity studies of kahalalide F, a new anticancer agent: single and multiple dosing regimens in the rat.Cancer Chemother. Pharmacol.50, 333–340 (2002).
Rademaker-Lakhai, J. M. et al. Phase I clinical and pharmacokinetic study of Kahalalide F in patients with advanced androgen refractory prostate cancer.Clin.Cancer Res.11, 1854–1862 (2005).
Ciruelos, C. et al. A phase I clinical and pharmacokinetic (PK) study with Kahalalide F (KF) in patients (pts) with advanced solid tumors (AST) with a continuous weekly (W) 1-hour iv infusion schedule.Eur. J. Cancer38 (Suppl.), S33 (2002).
Pettit, G. R. et al. Isolation and structure of bryostatin-1.J. Am. Chem. Soc.104, 6846–6848 (1982).
Schaufelberger, D. E. et al. The large-scale isolation of bryostatin-1 fromBugula neritina following current good manufacturing practices.J. Nat. Prod.54, 1265–1270 (1991).
Rouhi, M. A. Supply issues complicate trek of chemicals from sea to market.Chem. Eng. News73, 42–44 (1995).
Evans, D. A. et al. Total synthesis of bryostatin 2.J. Am. Chem. Soc.121, 7540–7552 (1999).
Ohmori, K. et al. Total synthesis of bryostatin 3.Angew. Chem. Int. Ed. Engl.39, 2290–2294 (2000).
Ohmori, K. Evolution of synthetic strategies for highly functionalized natural products: a successful route to bryostatin 3.Bull. Chem. Soc. Jap.77, 875–885 (2004).
Kageyama, M. et al. Synthesis of bryostatin-7.J. Am. Chem. Soc.112, 7407–7408 (1990).
Blanchette, M. A. et al. Synthesis of bryostatins.1. construction of the C(1)-C(16) fragment.J. Org. Chem.54, 2817–2825 (1989).
Voight, E. A., Seradi, H., Roethle, P. A. & Burke, S. D. Synthesis of the bryostatin 1 northern hemisphere (C1-C16) via desymmetrization by ketalization/ring-closing metathesis.Org. Lett.6, 4045–4048 (2004).
DeBrabander, J. & Vandewalle, M. Towards the asymmetric synthesis of bryostatin 1.Pure Appl. Chem.68, 715–718 (1996).
Isakov, N., Galron, D., Mustelin, T., Pettit, G. R. & Altman, A. Inhibition of phorbol ester-induced T-cell proliferation by bryostatin is associated with rapid degradation of protein-kinase-C.J. Immunol.150, 1195–1204 (1993).
Wender, P. A. et al. Synthesis of the first members of a new class of biologically active bryostatin analogues.J. Am. Chem. Soc.120, 4534–4535 (1998).
Wender, P. A. et al. Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C.Proc. Natl Acad. Sci. USA85, 7197–7201 (1988).
Hennings, H. et al. Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin.Carcinogenesis8, 1343–1346 (1987).
Berkow, R. L. et al.In vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity.Cancer Res.53, 2810–2815 (1993).
Hu, Z. B., Ma, W. L., Uphoff, C. C., Lanotte, M. & Drexler, H. G. Modulation of gene-expression in the acute promyelocytic leukemia-cell line Nb4.Leukemia7, 1817–1823 (1993).
Grant, S., Pettit, G. R. & McCrady, C. Effect of bryostatin-1 on thein vitro radioprotective capacity of recombinant granulocyte macrophage colony-stimulating factor (Rgm-Csf) toward committed human myeloid progenitor cells (Cfu-Gm).Exp. Hematol.20, 34–42 (1992).
Mutter, R. & Wills, M. Chemistry and clinical biology of the bryostatins.Bioorg. Med. Chem.8, 1841–1860 (2000).
Propper, D. J. et al. A phase II study of bryostatin 1 in metastatic malignant melanoma.Br. J. Cancer78, 1337–1341 (1998).
Varterasian, M. et al. Phase I trial of bryostatin 1 in relapsed lymphoma and CLL.Blood88, 2269 (1996).
Varterasian, M. L. et al. Phase II study of bryostatin 1 in patients with relapsed multiple myeloma.Invest. New Drugs19, 245–247 (2001).
Varterasian, M. L. et al. Phase II trial of bryostatin 1 in patients with relapsed low-grade non-Hodgkin's lymphoma and chronic lymphocytic leukemiaClin. Cancer Res.6, 825–828 (2000).
Grant, S. et al. Phase Ib trial of bryostatin 1 in patients with refractory malignancies.Clin. Cancer Res.4, 611–618 (1998).
Clamp, A. & Jayson, G. C. The clinical development of the bryostatins.Anticancer Drugs13, 673–683 (2002).
Hickman, P. F. et al. Bryostatin 1, a novel antineoplastic agent and protein-kinase-C activator, induces human myalgia and muscle metabolic defects — a P-31 magnetic-resonance spectroscopic study.Br. J. Cancer72, 998–1003 (1995).
Pfister, D. G. et al. A phase II trial of bryostatin-1 in patients with metastatic or recurrent squamous cell carcinoma of the head and neck.Invest. New Drugs20, 123–127 (2002).
Zonder, J. A. et al. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer.Clin. Cancer Res.7, 38–42 (2001).
Bedikian, A. Y. et al. Phase II evaluation of bryostatin-1 in metastatic melanoma.Melanoma Res.11, 183–188 (2001).
Pagliaro, L. et al. A phase II trial of bryostatin-1 for patients with metastatic renal cell carcinoma.Cancer89, 615–618 (2000).
Clamp, A. R. et al. A phase II trial of bryostatin-I administered by weekly 24-hour infusion in recurrent epithelial ovarian carcinoma.Br. J. Cancer89, 1152–1154 (2003).
Cragg, L. H. et al. Phase I trial and correlative laboratory studies of bryostatin I (NSC 339555) and high-dose 1-β-D-arabinofuranosylcytosine in patients with refractory acute leukemia.Clin. Cancer Res.8, 2123–2133 (2002).
Dowlati, A. et al. Phase I and correlative study of combination bryostatin 1 and vincristine in relapsed B-cell malignancies.Clin. Cancer Res.9, 5929–5935 (2003).
Ajani, J. A. Multi-center Phase II study of sequential paclitaxel and bryostatin-1 (NSC 339555) in patients with untreated, advanced gastric or gastroesophageal junction adenocarcinoma.Invest. New Drugs24, 353–357 (2006).
Schwartz, G. K. & Shah, M. A. Targeting the cell cycle: a new approach to cancer therapy.J. Clin. Oncol.23, 9408–9421 (2005).
Feher, M. & Schmidt, J. M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry.J. Chem. Inf. Comput. Sci.43, 218–227 (2003).
Udwary, D. W. et al. Genome sequencing reveals complex secondary metabolome in the marine actinomyceteSalinispora tropica.Proc. Natl Acad. Sci. USA104, 10376–10381 (2007).
Newman, D. J. & Hill, R. T. New drugs from marine microbes: the tide is turning.J. Ind. Microbiol. Biotechnol.33, 539–544 (2006).
Piel, J. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals.Curr. Med. Chem.13, 39–50 (2006).
Hildebrand, M. et al.bryA: An unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoanBugula neritina.Chem. Biol.11, 1543–1552 (2004).
Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont from the marine bryozoanBugula neritina. J. Nat. Prod.70, 67–74 (2007).
Homer,The Iliad, (∼7th century, B.C). Fagles, R. (translation). Penguin Books (1990).
Homer,The Odyssey (∼7th century B. C.). Fagles, R. (translation). Penguin Books (2006).
Feling, R. H. et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genusSalinospora.Angew. Chem. Intl. Ed.42, 355–357 (2003).
Maldonado, L., Fenical, W., Goodfellow, M., Jensen, P. R. & Ward, A. C.Salinispora gen nov., sp. nov.,Salinispora arenicola sp. nov., andS. tropica sp. nov., obligate marine actinomycetes belonging to the familyMicromonosporaceae.Internat. J. System. Appl. Microbiol.55, 1759–1766 (2005).
Chauhan, D. et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib.Cancer Cell8, 407–419 (2005).
Chauhan, D. et al. Combination of proteasome inhibitors bortezomib and NPI-0052 triggerin vivo synergistic cytotoxicity in multiple myeloma.Blood111, 1654–1664 (2008).
Fenicala, W. et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052).Bioorg. Med. Chem. 5 Nov 2008 (doi:10.1016/j.bmc.2008.10.075).This article, and several within the same issue of the journal, chronicle the discovery of key marine antitumour drugs by the original investigators and illustrates issues of procurement, scale-up, production and clinical investigations.
Searle, P. A. & Molinski, T. F. Phorboxazoles A and B — potent cytostatic macrolides from marine spongePhorbas sp.J. Am. Chem. Soc.117, 8126–8131 (1995).
Searle, P. A., Molinski, T. F., Brzezinski, L. J. & Leahy, J. W. Absolute configuration of phorboxazoles A and B from the marine spongePhorbas sp.1. macrolide and hemiketal rings.J. Am. Chem. Soc.118, 9422–9423 (1996).
Molinski T. F. Absolute configuration of phorboxazoles A and B from the marine sponge,Phorbas sp.2. C43 and complete stereochemistry.Tetrahedron Lett.37, 7879–7880 (1996).
Skepper, C. K., MacMillan, J. B., Zhou, G.-X., Masuno, M. N. & Molinski, T. F. Chlorocyclopropane macrolides from the marine spongePhorbas sp. Assignment of the absolute configurations of phorbasides A and B by quantitative CD.J. Am. Chem. Soc.129, 4150–4151 (2007).
MacMillan, J. B., Xiong-Zhou, G., Skepper, C. K. & Molinski, T. F. Phorbasides A-E, cytotoxic chlorocyclopropane macrolide glycosides from the marine sponge Phorbas sp. CD determination of C-methyl sugar configurations.J. Org. Chem.73, 3699–3706 (2008).
Acknowledgements
The authors are grateful to J. Blunt (University of Canterbury, New Zealand) and D. Newman (Developmental Therapeutics Program, US National Cancer Institute) for valuable discussions, and to S. Lopez-Legintil (University of North Carolina, Wilmington, USA) for kind permission to reproduce the underwater image ofEcteinascidia turbinata (figure 2b). Some of the authors' research described herein was supported by grants to T.F.M. from the US National Cancer Institute, National Institutes of Health (CA122256 and CA085602).
Author information
Authors and Affiliations
Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, 92093, California, USA
Tadeusz F. Molinski, Doralyn S. Dalisay, Sarah L. Lievens & Jonel P. Saludes
Department of Chemistry, University of California, One Shields Avenue, Davis, 95616, California, USA
Sarah L. Lievens & Jonel P. Saludes
- Tadeusz F. Molinski
You can also search for this author inPubMed Google Scholar
- Doralyn S. Dalisay
You can also search for this author inPubMed Google Scholar
- Sarah L. Lievens
You can also search for this author inPubMed Google Scholar
- Jonel P. Saludes
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toTadeusz F. Molinski.
Rights and permissions
About this article
Cite this article
Molinski, T., Dalisay, D., Lievens, S.et al. Drug development from marine natural products.Nat Rev Drug Discov8, 69–85 (2009). https://doi.org/10.1038/nrd2487
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Semisynthesis of 5-O-ester derivatives of renieramycin T and their cytotoxicity against non-small-cell lung cancer cell lines
- Koonchira Buaban
- Bhurichaya Innets
- Supakarn Chamni
Scientific Reports (2023)
Frontier studies on natural products: moving toward paradigm shifts
- Jin-Xin Zhao
- Jian-Min Yue
Science China Chemistry (2023)
Antioxidant and anticancer activities of nematocyst venom protein of five scyphozoan Chrysaora jellyfish’s species from the coastal waters of Tamil Nadu, India
- S. Amreen Nisa
- R. Vasantharaja
- K. Govindaraju
Biomass Conversion and Biorefinery (2023)
Current Prospects and Clinical Status of Microalgae Derived Chemotherapeutics
- Vandana Joshi
- Navneeta Bharadvaja
Revista Brasileira de Farmacognosia (2023)
Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis
- Jin Chen
- Li Xu
- Yu-Chao Gu
Marine Life Science & Technology (2023)