Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Cancer
  • Review Article
  • Published:

Pancreatic cancer biology and genetics

Nature Reviews Cancervolume 2pages897–909 (2002)Cite this article

Key Points

  • Pancreatic adenocarcinoma is a highly aggressive malignancy that shows profound resistance to extant treatments.

  • Genetic studies identified a signature molecular profile of this malignancy, consisting of mutations inKRAS,CDKN2A,TP53 andSMAD4/DPC4.

  • Pancreatic adenocarcinomas seem to arise from the progression of lesions that occur in the pancreatic ducts (pancreatic intraepithelial neoplasia, PanIN). Although the mutations listed above seem to occur in a temporal sequence in progressive PanIN stages, the specific biochemical and cellular events resulting from the mutations are not known.

  • This tumour type shows extensive genomic instability and aneuploidy. Telomere attrition and mutations inTP53 andBRCA2 are likely to contribute to these phenotypes.

  • There is ongoing study of the cell of origin in pancreatic adenocarcinoma. Although there is general agreement that the pancreatic ductal epithelial cell gives rise to this malignancy, there is evidence that transdifferentiation of other pancreatic cell types, such as acinar cells, might serve as an alternative route to pancreatic adenocarcinoma.

  • These tumours show an extensive proliferation of stromal fibroblasts and deposition of extracellular-matrix components (desmoplasia) that seem to promote growth and invasiveness. The molecular basis of this phenotype is not resolved, although TGF-β is thought to have a role.

  • Engineered mouse models have recapitulated some of the genetic and histological features of the human disease. The use of refined methodologies, such as tissue-specific mouse knockouts, should give insight into the biological and biochemical impact of tumour-suppressor gene loss or oncogene activation in pancreatic neoplasia.

Abstract

Pancreatic ductal adenocarcinoma is an aggressive and devastating disease, which is characterized by invasiveness, rapid progression and profound resistance to treatment. Advances in pathological classification and cancer genetics have improved our descriptive understanding of this disease; however, important aspects of pancreatic cancer biology remain poorly understood. What is the pathogenic role of specific gene mutations? What is the cell of origin? And how does the stroma contribute to tumorigenesis? A better understanding of pancreatic cancer biology should lead the way to more effective treatments.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the pancreas.
Figure 2: Genetic progression model of pancreatic adenocarcinoma.
Figure 3: Telomere attrition and genomic instability.
Figure 4: Model of relationship of pancreatic regeneration and tumorigenesis.

Similar content being viewed by others

References

  1. Niederhuber, J. E., Brennan, M. F. & Menck, H. R. The National Cancer Data Base report on pancreatic cancer.Cancer76, 1671–1677 (1995).

    Article CAS PubMed  Google Scholar 

  2. Warshaw, A. L. & Fernandez-del Castillo, C. Pancreatic carcinoma.N. Engl. J. Med.326, 455–465 (1992).

    Article CAS PubMed  Google Scholar 

  3. Ahrendt, S. A. & Pitt, H. A. Surgical management of pancreatic cancer.Oncology16, 725–734; discussion 734, 736–738, 740, 743 (2002).

    PubMed  Google Scholar 

  4. Kern, S. et al. A white paper: the product of a pancreas cancer think tank.Cancer Res.61, 4923–4932 (2001).

    CAS PubMed  Google Scholar 

  5. Anderson, K. E., Potter, J. D. & Mack, T. M. inCancer Epidemiology and Prevention (eds Schottenfeld, D. & Fraumeni, J. J.) 725–771 (Oxford University Press, New York, 1996).

    Google Scholar 

  6. Lynch, H. T. et al. Familial pancreatic cancer: a review.Semin. Oncol.23, 251–275 (1996).

    CAS PubMed  Google Scholar 

  7. Jaffee, E. M., Hruban, R. H., Canto, M. & Kern, S. E. Focus on pancreas cancer.Cancer Cell2, 25–28 (2002).

    Article CAS PubMed  Google Scholar 

  8. Eberle, M. A. et al. A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34.Am. J. Hum. Genet.70, 1044–1048 (2002).Linkage mapping of a new familial pancreatic cancer gene.

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Lowenfels, A. B. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group.J. Natl Cancer Inst.89, 442–446 (1997).

    Article CAS PubMed  Google Scholar 

  10. Whitcomb, D. C. et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene.Nature Genet.14, 141–145 (1996).

    Article CAS PubMed  Google Scholar 

  11. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer.Cell87, 159–170 (1996).

    Article CAS PubMed  Google Scholar 

  12. Cubilla, A. L. & Fitzgerald, P. J. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer.Cancer Res.36, 2690–2698 (1976).A landmark study providing histological evidence for a ductal cell of origin for pancreatic adenocarcinoma.

    CAS PubMed  Google Scholar 

  13. Klimstra, D. S. & Longnecker, D. S. K-ras mutations in pancreatic ductal proliferative lesions.Am. J. Pathol.145, 1547–1550 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  14. Hruban, R. H. et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions.Am. J. Surg. Pathol.25, 579–586 (2001).

    Article CAS PubMed  Google Scholar 

  15. Klein, W. M., Hruban, R. H., Klein-Szanto, A. J. & Wilentz, R. E. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression.Mod. Pathol.15, 441–447 (2002).

    Article PubMed  Google Scholar 

  16. Moskaluk, C. A., Hruban, R. H. & Kern, S. E. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma.Cancer Res.57, 2140–2143 (1997).

    CAS PubMed  Google Scholar 

  17. Yamano, M. et al. Genetic progression and divergence in pancreatic carcinoma.Am. J. Pathol.156, 2123–2133 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Luttges, J. et al. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis.Am. J. Pathol.158, 1677–1683 (2001).References 16–18 document common mutational profiles in PanINs and pancreatic adenocarcinomas occurring in the same patient, providing genetic evidence that PanINs are progenitors of adenocarcinomas.

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Wilentz, R. E. et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression.Cancer Res.60, 2002–2006 (2000).

    CAS PubMed  Google Scholar 

  20. Heinmoller, E. et al. Molecular analysis of microdissected tumors and preneoplastic intraductal lesions in pancreatic carcinoma.Am. J. Pathol.157, 83–92 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Rozenblum, E. et al. Tumor-suppressive pathways in pancreatic carcinoma.Cancer Res.57, 1731–1734 (1997).Mutational profile of a large series of pancreatic adenocarcinomas.

    CAS PubMed  Google Scholar 

  22. Biankin, A. V. et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia.Cancer Res.61, 8830–8837 (2001).

    CAS PubMed  Google Scholar 

  23. Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'.Trends Cell Biol.10, 147–154 (2000).

    Article CAS PubMed  Google Scholar 

  24. Korc, M. et al. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha.J. Clin. Invest.90, 1352–1360 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Barton, C. M., Hall, P. A., Hughes, C. M., Gullick, W. J. & Lemoine, N. R. Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer.J. Pathol.163, 111–116 (1991).

    Article CAS PubMed  Google Scholar 

  26. Friess, H. et al. Pancreatic cancer: the potential clinical relevance of alterations in growth factors and their receptors.J. Mol. Med.74, 35–42 (1996).

    Article CAS PubMed  Google Scholar 

  27. Watanabe, M., Nobuta, A., Tanaka, J. & Asaka, M. An effect of K-ras gene mutation on epidermal growth factor receptor signal transduction in PANC-1 pancreatic carcinoma cells.Int. J. Cancer67, 264–268 (1996).

    Article CAS PubMed  Google Scholar 

  28. Sibilia, M. et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development.Cell102, 211–220 (2000).

    Article CAS PubMed  Google Scholar 

  29. Day, J. D. et al. Immunohistochemical evaluation of HER-2/ neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms.Hum. Pathol.27, 119–124 (1996).

    Article CAS PubMed  Google Scholar 

  30. Wagner, M. et al. Expression of a truncated EGF receptor is associated with inhibition of pancreatic cancer cell growth and enhanced sensitivity to cisplatinum.Int. J. Cancer68, 782–787 (1996).

    Article CAS PubMed  Google Scholar 

  31. Overholser, J. P., Prewett, M. C., Hooper, A. T., Waksal, H. W. & Hicklin, D. J. Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice.Cancer89, 74–82 (2000).

    Article CAS PubMed  Google Scholar 

  32. Whelan, A. J., Bartsch, D. & Goodfellow, P. J. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene.N. Engl. J. Med.333, 975–977 (1995).

    Article CAS PubMed  Google Scholar 

  33. Goldstein, A. M. et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations.N. Engl. J. Med.333, 970–974 (1995).

    Article CAS PubMed  Google Scholar 

  34. Goldstein, A. M., Struewing, J. P., Chidambaram, A., Fraser, M. C. & Tucker, M. A. Genotype-phenotype relationships in U. S. melanoma-prone families with CDKN2A and CDK4 mutations.J. Natl Cancer Inst.92, 1006–1010 (2000).

    Article CAS PubMed  Google Scholar 

  35. Lynch, H. T. et al. Phenotypic variation in eight extendedCDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome.Cancer94, 84–96 (2002).

    Article CAS PubMed  Google Scholar 

  36. Borg, A. et al. High frequency of multiple melanomas and breast and pancreas carcinomas inCDKN2A mutation-positive melanoma families.J. Natl Cancer Inst.92, 1260–1266 (2000).

    Article CAS PubMed  Google Scholar 

  37. Sherr, C. J. The INK4A/ARF network in tumour suppression.Nature Rev. Mol. Cell Biol.2, 731–737 (2001).

    Article CAS  Google Scholar 

  38. Liu, L. et al. Mutation of theCDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma.Nature Genet.21, 128–132 (1999).

    Article PubMed CAS  Google Scholar 

  39. Lal, G. et al. Patients with both pancreatic adenocarcinoma and melanoma may harbor germlineCDKN2A mutations.Genes Chromosom. Cancer27, 358–361 (2000).

    Article CAS PubMed  Google Scholar 

  40. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice.Nature413, 83–86 (2001).

    Article CAS PubMed  Google Scholar 

  41. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis.Nature413, 86–91 (2001).References 40 and 41 report the phenotypes of Ink4a-knockout mice.

    Article CAS PubMed  Google Scholar 

  42. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging.Oncogene15, 203–211 (1997).

    Article CAS PubMed  Google Scholar 

  43. Nielsen, G. P. et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues.Lab. Invest.79, 1137–1143 (1999).

    CAS PubMed  Google Scholar 

  44. Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock?Cell102, 407–410 (2000).

    Article CAS PubMed  Google Scholar 

  45. Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions.Genes Dev.15, 398–403 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Schmitt, C. A. et al. A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy.Cell109, 335–346 (2002).

    Article CAS PubMed  Google Scholar 

  47. Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf.Genes Dev.12, 2997–3007 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Brookes, S. et al. INK4A-deficient human diploid fibroblasts are resistant to RAS-induced senescence.EMBO J.21, 2936–2945 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.Cell88, 593–602 (1997).References 47–49 provide an explanation for the oncogenic cooperation of activatedRAS genes and loss of theINK4A/ARF locus.

    Article CAS PubMed  Google Scholar 

  50. Luttges, J. et al. The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium.Cancer85, 1703–1710 (1999).

    Article CAS PubMed  Google Scholar 

  51. Laghi, L. et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers.Oncogene21, 4301–4306 (2002).

    Article CAS PubMed  Google Scholar 

  52. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras.Genes Dev.15, 3243–3248 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Chin, L. et al. Cooperative effects of INK4A and RAS in melanoma susceptibilityin vivo.Genes Dev.11, 2822–2834 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes.Genes Dev.15, 3249–3262 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products.Curr. Opin. Genet. Dev.9, 22–30 (1999).

    Article CAS PubMed  Google Scholar 

  56. Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer.Science297, 565–569 (2002).

    Article CAS PubMed  Google Scholar 

  57. Gorunova, L. et al. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations.Genes Chromosom. Cancer23, 81–99 (1998).

    Article CAS PubMed  Google Scholar 

  58. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice.Nature406, 641–645 (2000).

    Article CAS PubMed  Google Scholar 

  59. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis.Cell97, 527–538 (1999).

    Article CAS PubMed  Google Scholar 

  60. Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity.Proc. Natl Acad. Sci. USA97, 5357–5362 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors.Proc. Natl Acad. Sci. USA98, 12683–12688 (2001).Evidence for a role of telomere attrition in promoting chromosomal instability in the progression of pancreatic adenocarcinoma.

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Suehara, N. et al. Telomerase elevation in pancreatic ductal carcinoma compared to nonmalignant pathological states.Clin. Cancer Res.3, 993–998 (1997).

    CAS PubMed  Google Scholar 

  63. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2.Cell108, 171–182 (2002).

    Article CAS PubMed  Google Scholar 

  64. Cancer risks inBRCA2 mutation carriers. The Breast Cancer Linkage Consortium.J. Natl Cancer Inst.91, 1310–1316 (1999).

  65. Goggins, M., Hruban, R. H. & Kern, S. E. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications.Am. J. Pathol.156, 1767–1771 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Sato, N. et al. Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells.Cancer Genet. Cytogenet.126, 13–19 (2001).

    Article CAS PubMed  Google Scholar 

  67. Aarnio, M., Mecklin, J. P., Aaltonen, L. A., Nystrom-Lahti, M. & Jarvinen, H. J. Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome.Int. J. Cancer64, 430–433 (1995).

    Article CAS PubMed  Google Scholar 

  68. Goggins, M. et al. Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+.Am. J. Pathol.152, 1501–1507 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  69. Mahlamaki, E. H. et al. Comparative genomic hybridization reveals frequent gains of 20q, 8q, 11q, 12p, and 17q, and losses of 18q, 9p, and 15q in pancreatic cancer.Genes Chromosom. Cancer20, 383–391 (1997).

    Article CAS PubMed  Google Scholar 

  70. Peltomaki, P. & de la Chapelle, A. Mutations predisposing to hereditary nonpolyposis colorectal cancer.Adv. Cancer Res.71, 93–119 (1997).

    Article CAS PubMed  Google Scholar 

  71. Lynch, H. T., Voorhees, G. J., Lanspa, S. J., McGreevy, P. S. & Lynch, J. F. Pancreatic carcinoma and hereditary nonpolyposis colorectal cancer: a family study.Br. J. Cancer52, 271–273 (1985).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Yamamoto, H. et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability.Cancer Res.61, 3139–3144 (2001).

    CAS PubMed  Google Scholar 

  73. Wilentz, R. E. et al. Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity.Am. J. Pathol.156, 1641–1651 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Hahn, S. A. et al.DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.Science271, 350–353 (1996).Identification of SMAD4/DPC4.

    Article CAS PubMed  Google Scholar 

  75. Massague, J., Blain, S. W. & Lo, R. S. TGF-β signaling in growth control, cancer, and heritable disorders.Cell103, 295–309 (2000).

    Article CAS PubMed  Google Scholar 

  76. Sirard, C. et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling.J. Biol. Chem.275, 2063–2070 (2000).

    Article CAS PubMed  Google Scholar 

  77. Jonson, T. et al. Altered expression of TGF-β receptors and mitogenic effects of TGF-β in pancreatic carcinomas.Int. J. Oncol.19, 71–81 (2001).

    CAS PubMed  Google Scholar 

  78. Dai, J. L. et al. Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells.Mol. Carcinog.26, 37–43 (1999).

    Article CAS PubMed  Google Scholar 

  79. Giehl, K., Seidel, B., Gierschik, P., Adler, G. & Menke, A. TGF-β1 represses proliferation of pancreatic carcinoma cells which correlates with Smad4-independent inhibition of ERK activation.Oncogene19, 4531–4541 (2000).

    Article CAS PubMed  Google Scholar 

  80. Rowland-Goldsmith, M. A., Maruyama, H., Kusama, T., Ralli, S. & Korc, M. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cellsin vitro and attenuates tumor formation.Clin. Cancer Res.7, 2931–2940 (2001).

    CAS PubMed  Google Scholar 

  81. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome.Nature391, 184–187 (1998).

    Article CAS PubMed  Google Scholar 

  82. Solcia, E., Capella, C. & Kloppel, G.Tumors of the Pancreas (ed. Rosai, J.) (Armed Forces Institute for Pathology, Washington DC, 1995).

    Google Scholar 

  83. Pour, P. M. The role of langerhans islets in pancreatic ductal adenocarcinoma.Front Biosci.2, d271–282 (1997).

    Article CAS PubMed  Google Scholar 

  84. Boardman, L. A. et al. Genetic heterogeneity in Peutz–Jeghers syndrome.Hum. Mutat.16, 23–30 (2000).

    Article CAS PubMed  Google Scholar 

  85. Cooper, H. S. inPathology of the Gastrointestinal Tract (eds Ming, S.-C. & Goldman, H.) 819–853 (Wiliams & Wilkens, Baltimore, 1998).

    Google Scholar 

  86. Olschwang, S. et al. Peutz–Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3.J. Med. Genet.35, 42–44 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  87. Olschwang, S., Boisson, C. & Thomas, G. Peutz–Jeghers families unlinked toSTK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma.J. Med. Genet.38, 356–360 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Klimstra, D. S. inPancreatic Cancer: Advances in Molecular Pathology, Diagnosis and Clinical Management (eds Sarkar, F. S. & Duggan, M. C.) 21–48 (Eaton Publishing, Natick, Massachusetts, 1998).

    Google Scholar 

  89. Jimenez, R. E. et al. Immunohistochemical characterization of pancreatic tumors induced by dimethylbenzanthracene in rats.Am. J. Pathol.154, 1223–1229 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  90. Wagner, M. et al. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease.Genes Dev.15, 286–293 (2001).The first description of a genetically defined mouse model of pancreatic adenocarcinoma.

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Yoshida, T. & Hanahan, D. Murine pancreatic ductal adenocarcinoma produced byin vitro transduction of polyoma middle T oncogene into the islets of Langerhans.Am. J. Pathol.145, 671–684 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  92. Tosh, D. & Slack, J. M. How cells change their phenotype.Nature Rev. Mol. Cell Biol.3, 187–194 (2002).

    Article CAS  Google Scholar 

  93. Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function?Cell105, 829–841 (2001).

    Article CAS PubMed  Google Scholar 

  94. Bonner–Weir, S. & Sharma, A. Pancreatic stem cells.J. Pathol.197, 519–526 (2002).

    Article PubMed  Google Scholar 

  95. Elsasser, H.-P., Adler, G. & Kern, H. F. inThe Pancreas: Biology, Pathobiology and Disease (Raven Press Ltd, New York, 1993).

    Google Scholar 

  96. Bonner–Weir, S., Stubbs, M., Reitz, P., Taneja, M. & Smith, F. E. inPancreatic Growth and Regeneration (ed. Sarvetnick, N.) (Karger Landes Systems, Basel, Switzerland, 1997).

    Google Scholar 

  97. Sharma, A. et al. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration.Diabetes48, 507–513 (1999).

    Article CAS PubMed  Google Scholar 

  98. Vinik, A. I., Pittenger, G. L., Rafaeloff, R., Rosenberg, L. & Duguid, W. inPancreatic Growth and Regeneration. (ed. Sarvetnick, N.) 183–217 (Karger Landes Systems, Basel, 1997).

    Google Scholar 

  99. Scoggins, C. R. et al. p53-dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas.Am. J. Physiol. Gastrointest. Liver Physiol.279, G827–G836 (2000).

    Article CAS PubMed  Google Scholar 

  100. Kritzik, M. R. et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas.J. Endocrinol.163, 523–530 (1999).

    Article CAS PubMed  Google Scholar 

  101. Arnush, M. et al. Growth factors in the regenerating pancreas of γ-interferon transgenic mice.Lab. Invest.74, 985–990 (1996).

    CAS PubMed  Google Scholar 

  102. Rooman, I., Heremans, Y., Heimberg, H. & Bouwens, L. Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1in vitro.Diabetologia43, 907–914 (2000).

    Article CAS PubMed  Google Scholar 

  103. Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf. Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis.Cancer Cell1, 269–277 (2002).

    Article CAS PubMed  Google Scholar 

  104. Lohr, M. et al. Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma.Cancer Res.61, 550–555 (2001).

    CAS PubMed  Google Scholar 

  105. Schwarte-Waldhoff, I. et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis.Proc. Natl Acad. Sci. USA97, 9624–9629 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  106. Bissell, M. J. & Radisky, D. Putting tumours in context.Nature Rev. Cancer1, 46–54 (2001).

    CAS  Google Scholar 

  107. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium.Cancer Res.59, 5002–5011 (1999).

    CAS PubMed  Google Scholar 

  108. Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges.Cell108, 135–144 (2002).

    Article CAS PubMed  Google Scholar 

  109. Ornitz, D. M., Hammer, R. E., Messing, A., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice.Science238, 188–193 (1987).

    Article CAS PubMed  Google Scholar 

  110. Glasner, S., Memoli, V. & Longnecker, D. S. Characterization of the ELSV transgenic mouse model of pancreatic carcinoma. Histologic type of large and small tumors.Am. J. Pathol.140, 1237–1245 (1992).

    CAS PubMed PubMed Central  Google Scholar 

  111. Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by Ras expression in acinar cells of transgenic mice.Cell48, 1023–1034 (1987).

    Article CAS PubMed  Google Scholar 

  112. Sandgren, E. P., Quaife, C. J., Paulovich, A. G., Palmiter, R. D. & Brinster, R. L. Pancreatic tumor pathogenesis reflects the causative genetic lesion.Proc Natl Acad Sci USA88, 93–97 (1991).

    Article CAS PubMed PubMed Central  Google Scholar 

  113. Sandgren, E. P. et al. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver.Mol. Cell Biol.13, 320–330 (1993).

    CAS PubMed PubMed Central  Google Scholar 

  114. Bardeesy, N. et al. Obligate roles for p16(Ink4a) and p19(Arf)-p53 in the suppression of murine pancreatic neoplasia.Mol. Cell Biol.22, 635–643 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  115. Sotillo, R. et al. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors.EMBO J.20, 6637–6647 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  116. Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia.Nature Genet.22, 44–52 (1999).

    Article CAS PubMed  Google Scholar 

  117. Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice.Oncogene19, 1868–1874 (2000).

    Article CAS PubMed  Google Scholar 

  118. Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice.Cancer Res.59, 6113–6117 (1999).

    CAS PubMed  Google Scholar 

  119. Jishage, K. et al. Role ofLkb1, the causative gene of Peutz–Jegher's syndrome, in embryogenesis and polyposis.Proc. Natl Acad. Sci. USA99, 8903–8908 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  120. Miyoshi, H. et al. Gastrointestinal hamartomatous polyposis inLkb1 heterozygous knockout mice.Cancer Res.62, 2261–2266 (2002).

    CAS PubMed  Google Scholar 

  121. Bardeesy, N. et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation.Nature419, 162–167 (2002).

    Article CAS PubMed  Google Scholar 

  122. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice.Genes Dev.12, 1599–1609 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  123. Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer.Nature Rev. Cancer2, 251–265 (2002).

    Article CAS  Google Scholar 

  124. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors.Development129, 2447–2457 (2002).

    Article CAS PubMed  Google Scholar 

  125. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance.Nature400, 468–472 (1999).

    Article CAS PubMed  Google Scholar 

  126. Hennig, R. et al. 5-lipoxygenase and leukotriene b(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue.Am. J. Pathol.161, 421–428 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  127. Maitra, A. et al. Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging.Am. J. Clin. Pathol.118, 194–201 (2002).

    Article CAS PubMed  Google Scholar 

  128. Tucker, O. N. et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer.Cancer Res.59, 987–990 (1999).

    CAS PubMed  Google Scholar 

  129. Anderson, K. E., Johnson, T. W., Lazovich, D. & Folsom, A. R. Association between nonsteroidal anti-inflammatory drug use and the incidence of pancreatic cancer.J. Natl Cancer Inst.94, 1168–1171 (2002).

    Article PubMed  Google Scholar 

  130. Oshima, M. & Taketo, M. M. COX selectivity and animal models for colon cancer.Curr. Pharm. Des.8, 1021–1034 (2002).

    Article CAS PubMed  Google Scholar 

  131. Ramaswamy, S. & Golub, T. R. DNA microarrays in clinical oncology.J. Clin. Oncol.20, 1932–1941 (2002).

    Article CAS PubMed  Google Scholar 

  132. Argani, P. et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma.Cancer Res.61, 4320–4324 (2001).

    CAS PubMed  Google Scholar 

  133. Iacobuzio-Donahue, C. A. et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology.Am. J. Pathol.160, 1239–1249 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  134. Rosty, C. et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology.Cancer Res.62, 1868–1875 (2002).

    CAS PubMed  Google Scholar 

  135. Han, H. et al. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray.Cancer Res.62, 2890–2896 (2002).

    CAS PubMed  Google Scholar 

  136. Githens, S. inThe Pancreas: Biology, Pathobiology and Disease (eds Liang, V. & Go, W.) 21–55 (Raven Press Ltd, New York, 1993).

    Google Scholar 

  137. Slack, J. M. Developmental biology of the pancreas.Development121, 1569–1580 (1995).

    Article CAS PubMed  Google Scholar 

  138. Kim, S. K. & Hebrok, M. Intercellular signals regulating pancreas development and function.Genes Dev.15, 111–127 (2001).

    Article CAS PubMed  Google Scholar 

  139. Kobitsu, K. et al. Shortened telomere length and increased telomerase activity in hamster pancreatic duct adenocarcinomas and cell lines.Mol. Carcinog.18, 153–159 (1997).

    Article CAS PubMed  Google Scholar 

  140. Edlund, H. Organogenesis: pancreatic organogenesis developmental mechanisms and implications for therapy.Nature Rev. Genet.3, 524–532 (2002).

    Article CAS PubMed  Google Scholar 

  141. Hebrok, M., Kim, S. K. & Melton, D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development.Genes Dev.12, 1705–1713 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  142. Wells, J. M. & Melton, D. A. Vertebrate endoderm development.Annu. Rev. Cell Dev. Biol.15, 393–410 (1999).

    Article CAS PubMed  Google Scholar 

  143. Shen, C. N., Slack, J. M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver.Nature Cell Biol.2, 879–887 (2000).

    Article CAS PubMed  Google Scholar 

  144. Harada, T. et al. Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer.Cancer Res62, 835–839 (2002).

    CAS PubMed  Google Scholar 

  145. Giardiello, F. M. et al. Very high risk of cancer in familial Peutz–Jeghers syndrome.Gastroenterology119, 1447–1453 (2000).

    Article CAS PubMed  Google Scholar 

  146. Clarke, A. R., Cummings, M. C. & Harrison, D. J. Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy.Oncogene11, 1913–1920 (1995).

    CAS PubMed  Google Scholar 

  147. Meszoely, I. M., Means, A. L., Scoggins, C. R. & Leach, S. D. Developmental aspects of early pancreatic cancer.Cancer J.7, 242–250 (2001).

    CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Adult Oncology, Dana–Farber Cancer Institute and Departments of Medicine and Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Nabeel Bardeesy & Ronald A. DePinho

Authors
  1. Nabeel Bardeesy

    You can also search for this author inPubMed Google Scholar

  2. Ronald A. DePinho

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toRonald A. DePinho.

Glossary

PANCREATIC ADENOCARCINOMA

The most common type of cancer of the pancreas, accounting for greater than 85% of pancreatic neoplasms. These tumours show histological resemblance to the pancreatic ducts and are also referred to as pancreatic ductal adenocarcinoma, or simply pancreatic cancer.

PANCREATICODUODENECTOMY

A surgical resection of the distal stomach, duodenum, common duct, and head of the pancreas, containing the pancreatic neoplasm.

INK4A

A cyclin-dependent kinase inhibitor that acts on cyclin-D–CDK4/6. It prevents hyperphosphorylation and inactivation of RB, so cells can not enter S phase.

ARF

A regulator of p53 that functions by inhibiting MDM2-dependent proteolysis of p53.

LOSS OF HETEROZYGOSITY

(LOH). In cells that carry a mutated allele of a tumour-suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele. Regions with high frequency of LOH are believed to harbour tumour-suppressor genes.

MAPK PATHWAY

A signal-transduction pathway that is crucial for the integration of mitogenic signals mediated by various growth factors. Activation of this pathway is involved in many cellular processes, including cell-cycle progression.

AUTOCRINE SIGNALLING

A signal-transduction mechanism in which both a secreted ligand and corresponding cell-surface receptor are expressed by the same cell.

PI3K PATHWAY

The phosphatidylinositol 3-kinase (PI3K) family of enzymes are activated in response to various stimuli and catalyse the phophorylation of inositol lipids at the d-3 position of the inositol ring. These phosphoinositides act as second messengers; a primary target is the serine/threonine kinase AKT (protein kinase B). Activated AKT phosphorylates several cellular targets, including proteins that are involved in cell survival, proliferation and migration.

FIELD DEFECT

The independent transformation of different epithelial cells following exposure of an area of tissue to carcinogenic insults.

COMPARATIVE GENOMIC HYBRIDIZATION

A method that is used to detect chromosome copy-number alterations. Tumour and control DNA are labelled with different coloured fluorescent dyes and hybridized to metaphase chromosomes. Deletions/amplifications are visualized by changes in the fluorescent spectrum at specific chromosomal regions. Array-CGH allows higher resolution and accuracy as it uses hybridization to small DNA fragments that are arranged on microchips.

TRANSFORMING GROWTH FACTOR-β FAMILY

Secreted growth factors, comprising the TGF-β, bone morphogenic protein and activin families, which transduce signals through specific cell-surface receptors. These signalling pathways control many morphogenic and homeostatic processes. SMAD4 mediates TGF-β-family signalling, linking receptor stimulation to transcriptional responses by complexing with specific receptor-activated SMADs and other transcriptional components.

STROMA

The non-transformed component of epithelial tumours, comprised of fibroblasts, blood-vessel elements and immune cells. The stromal cells do not show the same clonal genetic changes as the malignant tumour cells, yet are altered by molecular events in the tumour cells and, in turn, modulate biological features of the tumour compartment. These heterotypic interactions are fundamental to tumour genesis and progression.

CELL OF ORIGIN

The cell type and specific developmental stage from which a tumour type evolves. Although epithelial tumours are classified by their histological resemblance to normal cellular counterparts, this might not strictly indicate a cell-lineage relationship, given the known developmental plasticity of malignant cells. Understanding the cell of origin in pancreatic adenocarcinoma might help in prevention, diagnosis and treatment.

TRANSDIFFERENTIATION

The conversion of one differentiated cell type into another. Transdifferentiation and the conversion between undifferentiated stem cells of different tissue are subclasses of metaplasia.

APCMin/+

A mouse strain that is prone to the development of multiple intestinal polyps, due to mutations in the Apc gene — the homologue of the human familial colon cancer gene.

CRE RECOMBINASE

An enzyme that is derived from the P1 bacteriophage that binds to a 34-base-pair DNA sequence (loxP site). Sequences flanked byloxP sites can be excised byCre recombinase expression. The Cre–Lox system is a technology that allows genes to be ablated in a tissue-selective and inducible manner.

AVIAN RETROVIRAL RECEPTOR

An avian cell-surface protein that is required for infection by the avian sarcoma and leukosis virus (ASLV). Tissue-specific expression of the gene encoding this receptor in transgenic mice enables infection of these tissues with ASLV, allowing somatically targeted gene transfer.

Rights and permissions

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp