- Review Article
- Published:
Mitochondria and cancer
Nature Reviews Cancervolume 12, pages685–698 (2012)Cite this article
48kAccesses
1780Citations
60Altmetric
Key Points
Warburg observed, 70 years ago, that tumours produce excess lactate in the presence of oxygen. This became known as aerobic glycolysis or the 'Warburg effect' which he interpreted as mitochondrial dysfunction. However, it is now clear that mitochondrial function is essential for cancer cell viability, because elimination of cancer cell mitochondrial DNAs (mtDNAs) reduces their growth rate and tumorigenicity.
The mitochondrial genome encompasses thousands of copies of the mtDNA and more than one thousand nuclear DNA (nDNA)-encoded genes. mtDNA mutations have been found in various cancers and seem to alter mitochondrial metabolism, enhance tumorigenesis and permit cancer cell adaptation to changing environments.
Mutations in nDNA genes involved in mitochondrial metabolism, including succinate dehydrogenase (SDH), fumarate hydratase (FH), isocitrate dehydrogenase 1 (IDH1) andIDH2, result in increased succinate, fumarate, orR(-)-2-hydroxyglutarate levels. These metabolic alterations can inhibit various α-ketoglutarate-dependent dioxygenases; they can also activate the NFE2-related factor 2 (NRF2) stress response pathway. All of these effects can contribute to tumorigenesis.
Activation of signalling pathways and oncogenes that are known to be important in tumorigenesis also affect mitochondrial function. The PI3K–PTEN–AKT pathway shifts metabolism from oxidative to glycolytic, thus permitting the redistribution of glycolytic nutrients from catabolism to anabolism. Activation of MYC induces glutaminolysis, which provides anaplerotic substrates to the mitochondrial tricarboxylic acid cycle, thus enhancing citrate production and its export to the cytosol to provide acetyl-CoA for lipid biogenesis and protein modifications.
Altered mitochondrial metabolism can increase the production of mitochondrial reactive oxygen species (ROS) and change the cellular redox status, thus altering the activities of transcription factors such as HIF1α and FOS–JUN to change gene expression and stimulate cancer cell proliferation.
A decrease of the mitochondrial membrane potential or mutation of the promyelocytic leukaemia (PML) gene reduces mitochondrial Ca2+ uptake, thus decreasing the activation of the mitochondrial intrinsic apoptosis pathway.
Reduced mitochondrial Ca2+ retention increases the cytosolic Ca2+ concentration. This activates mitochondrial retrograde signalling through stimulation of calcineurin and IκBβ-dependent NF-κB, activation of enhanceosome-driven transcription and increased metastatic potential.
Cancer cell ROS production inactivates caveolin 1 in adjacent stromal fibroblasts. This increases mitophagy, reduces mitochondrial function and increases lactate production in these fibroblasts. Secreted stromal cell lactate then fuels cancer cell oxidative metabolism, which drives tumour growth and proliferation. This is known as the 'reverse Warburg effect'.
Abstract
Contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Although mutations in mitochondrial genes are common in cancer cells, they do not inactivate mitochondrial energy metabolism but rather alter the mitochondrial bioenergetic and biosynthetic state. These states communicate with the nucleus through mitochondrial 'retrograde signalling' to modulate signal transduction pathways, transcriptional circuits and chromatin structure to meet the perceived mitochondrial and nuclear requirements of the cancer cell. Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment. These alterations activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Warburg, O.The Metabolism of Tumors (R. R. Smith, 1931).
Warburg, O. On the origin of cancer cells.Science123, 309–314 (1956).
Wallace, D. C. Mitochondria and cancer: Warburg addressed.Cold Spring Harb. Symp. Quant. Biol.70, 363–374 (2005).
Lin, M. Molecular imaging using positron emission tomography in colorectal cancer.Discov. Med.11, 435–447 (2011).
Pedersen, P. L. Tumor mitochondria and the bioenergetics of cancer cells.Prog . Exp. Tumor Res.22, 190–274 (1978).
Lane, N. & Martin, W. The energetics of genome complexity.Nature467, 929–934 (2010).
Wallace, D. C. Why do we have a maternally inherited mitochondrial DNA?Insights from evolutionary medicine.Annu. Rev. Biochem.76, 781–821 (2007).
Horton, T. M. et al. Novel mitochondrial DNA deletion found in a renal cell carcinoma.Genes Chromosomes Cancer15, 95–101 (1996).
Desjardins, P., Frost, E. & Morais, R. Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts.Mol. Cell. Biol.5, 1163–1169 (1985).
Desjardins, P., de Muys, J. M. & Morais, R. An established avian fibroblast cell line without mitochondrial DNA.Somat. Cell Genet.12, 133–139 (1986).
King, M. P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation.Science246, 500–503 (1989).
Magda, D. et al. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft.BMC Genomics9, 521 (2008).
Morais, R. et al. Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA.Cancer Res.54, 3889–3896 (1994).
Cavalli, L. R., Varella-Garcia, M. & Liang, B. C. Diminished tumorigenic phenotype after depletion of mitochondrial DNA.Cell Growth Differ.8, 1189–1198 (1997).
Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential forKras-mediated tumorigenicity.Proc. Natl Acad. Sci. USA107, 8788–8793 (2010).
Murgia, M., Giorgi, C., Pinton, P. & Rizzuto, R. Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling.J. Mol. Cell. Cardiol.46, 781–788 (2009).
Aanen, D. K. & Maas, M. F. Recruitment of healthy mitochondria fuels transmissible cancers.Trends Genet.28, 1–6 (2012).
Rebbeck, C. A., Leroi, A. M. & Burt, A. Mitochondrial capture by a transmissible cancer.Science331, 303 (2011).
Brandon, M., Baldi, P. & Wallace, D. C. Mitochondrial mutations in cancer.Oncogene25, 4647–4662 (2006).
Chinnery, P. F., Samuels, D. C., Elson, J. & Turnbull, D. M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism?Lancet360, 1323–1325 (2002).
Copeland, W. C., Wachsman, J. T., Johnson, F. M. & Penta, J. S. Mitochondrial DNA alterations in cancer.Cancer Invest.20, 557–569 (2002).
Gasparre, G. et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma.Hum. Mol. Genet.17, 986–995 (2008).
Bartoletti-Stella, A. et al. Mitochondrial DNA mutations in oncocytic adnexal lacrimal glands of the conjunctiva.Arch. Ophthalmol.129, 664–666 (2011).
Pereira, L., Soares, P., Maximo, V. & Samuels, D. C. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors.BMC Cancer12, 53 (2012).
Salas, A. et al. A critical reassessment of the role of mitochondria in tumorigenesis.PLoS Med.2, e296 (2005).
Meierhofer, D. et al. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism.Br. J. Cancer94, 268–274 (2006).
Czarnecka, A. M. et al. Molecular oncology focus - is carcinogenesis a 'mitochondriopathy'?J. Biomed. Sci.17, 31 (2010).
Howell, A. N. & Sager, R. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines.Proc. Natl Acad. Sci. USA75, 2358–2362 (1978).
Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer.Proc. Natl Acad. Sci. USA102, 719–724 (2005).A demonstration that human mtDNA mutations that increase ROS production enhance tumorigenesis, whereas normal mtDNAs suppress tumorigenesis.
Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis.Cancer Res.65, 1655–1663 (2005).
Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis.Science320, 661–664 (2008).This study shows that mouse mtDNA mutations that increase mitochondrial ROS levels also increase tumorigenesis.
Canter, J. A., Kallianpur, A. R., Parl, F. F. & Millikan, R. C. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women.Cancer Res.65, 8028–8033 (2005).
Liu, V. W. et al. Mitochondrial DNA variant 16189T>C is associated with susceptibility to endometrial cancer.Hum. Mut.22, 173–174 (2003).
Permuth-Wey, J. et al. Inherited variants in mitochondrial biogenesis genes may influence epithelial ovarian cancer risk.Cancer Epidemiol. Biomarkers Prev.20, 1131–1145 (2011).
Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes.Proc. Natl Acad. Sci. USA100, 1116–1121 (2003).
Zhai, K., Chang, L., Zhang, Q., Liu, B. & Wu, Y. Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection.Mitochondrion11, 559–563 (2011).
Wallace, D. C. Bioenergetic origins of complexity and diseases.Cold Spring Harb. Symp. Quant. Biol.76, 1–16 (2011).
Ruiz-Pesini, E. & Wallace, D. C. Evidence for adaptive selection acting on the tRNA and rRNA genes of the human mitochondrial DNA.Hum. Mut.27, 1072–1081 (2006).
Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans.Proc. Natl Acad. Sci. USA100, 171–176 (2003).
Wallace, D. C. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man.Proc. Natl Acad. Sci. USA107, 8947–8953 (2010).
Parrella, P. et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates.Cancer Res.61, 7623–7626 (2001).
Guo, J. et al. Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer.Cancer Res.71, 2978–2987 (2011).
Han, B. et al. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth.Biochem. Biophys. Res. Commun.408, 45–51 (2011).
Bogenhagen, D. F., Rousseau, D. & Burke, S. The layered structure of human mitochondrial DNA nucleoids.J. Biol. Chem.283, 3665–3675 (2008).
Bogenhagen, D. F. Mitochondrial DNA nucleoid structure.Biochim. Biophys. Acta1819, 914–920 (2011).
Khidr, L. et al. Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells.J. Biol. Chem.283, 27064–27073 (2008).
Chen, P.-L. et al. Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan.Oncogene 7 May 2012 (doi:10.1038/onc.2012.120).
Bardella, C., Pollard, P. J. & Tomlinson, I. SDH mutations in cancer.Biochim. Biophys. Acta1807, 1432–1443 (2011).
Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.Science287, 848–851 (2000).The first report that inactivation of SDHD can cause paragangliosis.
Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3.Nature Genet.26, 268–270 (2000).
Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma.Am. J. Hum. Genet.69, 49–54 (2001).
Kurelac, I., Romeo, G. & Gasparre, G. Mitochondrial metabolism and cancer.Mitochondrion11, 635–637 (2011).
Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics.Mitochondrion10, 12–31 (2010).
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing.J. Biol. Chem.275, 25130–25138 (2000).Evidence that increased mitochondrial ROS levels can inactivate PHDs and activate HIF1α.
Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. & Schumacker, P. T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis.Mol. Cell. Biochem.28, 718–731 (2008).
Selak, M. A., Duran, R. V. & Gottlieb, E. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells.Biochim. Biophys. Acta1757, 567–572 (2006).
Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors.Genes Dev.26, 1326–1338 (2012).A demonstration that excessive dicarboxylic acids from SDH and FH inactivation inhibit α-ketoglutarate-dependent dioxygenases, thus altering chromatin structure and gene expression.
Picaud, S. et al. Structural basis of fumarate hydratase deficiency.J. Inherit. Metab. Dis.34, 671–676 (2011).
Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase.Nature477, 225–228 (2011).A report that increased fumarate levels activates the NRF2 stress response, inducing HMOX1 and haem degradation.
Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling.Cancer Cell20, 524–537 (2011).
Stark, R. et al. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion.J. Biol. Chem.284, 26578–26590 (2009).
Kibbey, R. G. et al. Mitochondrial GTP regulates glucose-stimulated insulin secretion.Cell Metab.5, 253–264 (2007).
Thompson, C. B. Metabolic enzymes as oncogenes or tumor suppressors.New Engl. J. Med.360, 813–815 (2009).
Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate.Cancer Cell17, 225–234 (2010).
Ward, P. S. et al. Identification of additional IDH mutations associated with oncometabolite R(–)-2-hydroxyglutarate production.Oncogene31, 2491–2498 (2012).
Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.Nature462, 739–744 (2009).This study reports that heterozygousIDH1 mutation creates a neomorphic enzyme that generates the novel metabolite (R)-2HG.
Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation.Nature483, 484–488 (2012).This study shows that in contrast to succinate and fumarate, (R)-2HG does not inactivate PHDs and activate HIF1α, implying that tumorigenesis involves an alternative pathway.
Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia.Cancer Cell17, 13–27 (2010).
Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases.EMBO Rep.12, 463–469 (2011).
Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation.Nature483, 474–478 (2012).
Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype.Nature483, 479–483 (2012).
Yoon, J. C. et al. Wnt signaling regulates mitochondrial physiology and insulin sensitivity.Genes Dev.24, 1507–1518 (2010).
Bjornsson, H. T. et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors.J. Natl Cancer Inst.99, 1270–1273 (2007).
Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease.Nature447, 433–440 (2007).
Feinberg, A. P. Epigenetics at the epicenter of modern medicine.JAMA299, 1345–1350 (2008).
Smiraglia, D. J., Kulawiec, M., Bistulfi, G. L., Gupta, S. G. & Singh, K. K. A novel role for mitochondria in regulating epigenetic modification in the nucleus.Cancer Biol. Ther.7, 1182–1190 (2008).
Naviaux, R. K. Mitochondrial control of epigenetics.Cancer Biol. Ther.7, 1191–1193 (2008).
Toye, A. A. et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice.Diabetologia48, 675–686 (2005).
Freeman, H. C., Hugill, A., Dear, N. T., Ashcroft, F. M. & Cox, R. D. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice.Diabetes55, 2153–2156 (2006).
Collins, S., Martin, T. L., Surwit, R. S. & Robidoux, J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics.Physiol. Behav.81, 243–248 (2004).
Nicholson, A. et al. Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene.Obesity18, 1902–1905 (2010).
Huang, T. T. et al. Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase.Hum. Mol. Genet.15, 1187–1194 (2006).
Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria.Nature481, 385–388 (2012).This study shows that mitochondrial α-ketoglutarate can be reductively carboxylated using mitochondrial NADPH to increase citrate production.
Wallace, D. C., Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics.Annu. Rev. Pathol.5, 297–348 (2010).
Melov, S. et al. Mitochondrial disease in superoxide dismutase 2 mutant mice.Proc. Natl Acad. Sci. USA96, 846–851 (1999).
Yan, L. J., Levine, R. L. & Sohal, R. S. Oxidative damage during aging targets mitochondrial aconitase.Proc. Natl Acad. Sci. USA94, 11168–11172 (1997).
Tong, J., Schriner, S. E., McCleary, D., Day, B. J. & Wallace, D. C. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for Neurofibromatosis-1 inDrosophila melanogaster.Nature Genet.39, 476–485 (2007).
Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics.Nature488, 656–659 (2012).
Gupta, S. C. et al. Upsides and downsides of ROS for cancer: the roles of ROS in tumorigenesis, prevention, and therapy.Antioxid. Redox Signal.16, 1295–1322 (2012).
Burdon, R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation.Free Rad. Biol. Med.18, 775–794 (1995).
Lander, H. M. An essential role for free radicals and derived species in signal transduction.FASEB J.11, 118–124 (1997).
Abate, C., Patel, L., Rauscher, F. J. & Curran, T. Redox regulation of fos and jun DNA-binding activityin vitro.Science249, 1157–1161 (1990).The first demonstration that FOS and JUN are regulated by cysteine oxidation–reduction.
Liu, H., Colavitti, R., Rovira, I. I. & Finkel, T. Redox-dependent transcriptional regulation.Circul. Res.97, 967–974 (2005).
Ordway, J. M., Eberhart, D. & Curran, T. Cysteine 64 of Ref-1 is not essential for redox regulation of AP-1 DNA binding.Mol. Cell. Biol.23, 4257–4266 (2003).
Xanthoudakis, S., Miao, G. G. & Curran, T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains.Proc. Natl Acad. Sci. USA91, 23–27 (1994).
Go, Y. M. & Jones, D. P. Redox compartmentalization in eukaryotic cells.Biochim. Biophys. Acta1780, 1273–1290 (2008).
Jones, D. P. Radical-free biology of oxidative stress.Am. J. Physiol. Cell Physiol.295, C849–C868 (2008).
Kemp, M., Go, Y. M. & Jones, D. P. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology.Free Rad. Biol. Med.44, 921–937 (2008).
Guzy, R. D., Mack, M. M. & Schumacker, P. T. Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast.Antioxid. Redox Signal.9, 1317–1328 (2007).
Sanchez-Cenizo, L. et al. Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype.J. Biol. Chem.285, 25308–25313 (2010).
Willers, I. M. & Cuezva, J. M. Post-transcriptional regulation of the mitochondrial H+-ATP synthase: a key regulator of the metabolic phenotype in cancer.Biochim. Biophys. Acta1807, 543–551 (2011).
Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth.Genes Dev.23, 537–548 (2009).
Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer.Trends Biochem. Sci.35, 427–433 (2010).
DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.Cell Metab.7, 11–20 (2008).A report that activation of the PI3K–PTEN–AKT pathway redirects cellular metabolism from oxidative catabolism to glycolytic anabolism, thus enhancing cancer cell biogenesis.
Pedersen, P. L., Mathupala, S., Rempel, A., Geschwind, J. F. & Ko, Y. H. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention.Biochim. Biophys. Acta1555, 14–20 (2002).
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis?Nature Rev. Cancer4, 891–899 (2004).
Nemoto, S. & Finkel, T. Ageing and the mystery at Arles.Nature429, 149–152 (2004).
Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine.Annu. Rev. Genet.39, 359–407 (2005).An overview of mitochondrial biology and genetics and their relation to disease.
Daitoku, H., Yamagata, K., Matsuzaki, H., Hatta, M. & Fukamizu, A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR.Diabetes52, 642–649 (2003).
Spiegelman, B. M. & Heinrich, R. Biological control through regulated transcriptional coactivators.Cell119, 157–167 (2004).
Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression.Cell Death Differ.19, 968–979 (2012).
Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis.Mol. Cell. Biol.25, 6225–6234 (2005).
Bluemlein, K. et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis.Oncotarget2, 393–400 (2011).
Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth.Sci. Signal.2, ra73 (2009).
Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses.Science334, 1278–1283 (2011).
Gruning, N. M. et al. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells.Cell Metab.14, 415–427 (2011).A demonstration that oxidation of PKM2 inhibits glycolysis and redirects substrates into the pentose phosphate pathway to synthesize NADPH and enhance antioxidant defences.
Hamanaka, R. B. & Chandel, N. S. Warburg effect and redox balance.Science334, 1219–1220 (2011).
Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast,Drosophila, and humans.Science337, 96–100 (2012).
Hoyos, B., Acin-Perez, R., Fischman, D. A., Manfredi, G. & Hammerling, U. Hiding in plain sight: uncovering a new function of vitamin A in redox signaling.Biochim. Biophys. Acta1821, 241–247 (2012).
Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress.Genes Dev.25, 1041–1051 (2011).
DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.Proc. Natl Acad. Sci. USA104, 19345–19350 (2007).This study shows that MYC induction of glutaminolysis provides anaplerotic TCA cycle intermediates to generate citrate and sustain cytosolic fatty acid synthesis.
Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.Proc. Natl Acad. Sci. USA105, 18782–18787 (2008).
Bensaad, K., Cheung, E. C. & Vousden, K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy.EMBO J.28, 3015–3026 (2009).
Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.Cell126, 107–120 (2006).
Matoba, S. et al. p53 regulates mitochondrial respiration.Science312, 1650–1653 (2006).
Sahin, E. & Depinho, R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing.Nature464, 520–528 (2010).
Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells.Cell129, 111–122 (2007).
Semenza, G. L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1.Biochem. J.405, 1–9 (2007).
Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity.Cancer Cell11, 407–420 (2007).
Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.J. Biol. Chem.283, 10892–10903 (2008).
Semenza, G. L. Mitochondrial autophagy: life and breath of the cell.Autophagy4, 534–536 (2008).
Devlin, C., Greco, S., Martelli, F. & Ivan, M. miR-210: more than a silent player in hypoxia.IUBMB Life63, 94–100 (2011).
Bell, E. L., Emerling, B. M., Ricoult, S. J. & Guarente, L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production.Oncogene30, 2986–2996 (2011).
Yang, J. et al. Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression.J. Clin. Invest.122, 600–611 (2012).
Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1.Cell145, 732–744 (2011).
Luo, W. & Semenza, G. L. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells.Oncotarget2, 551–556 (2011).
McCormack, J. G. & Denton, R. M. A comparative study of the regulation of Ca2+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources.Biochem. J.196, 619–624 (1981).
McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism.Physiol. Rev.70, 391–425 (1990).
Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter.Nature476, 341–345 (2011).
De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter.Nature476, 336–340 (2011).
Pinton, P., Giorgi, C. & Pandolfi, P. P. The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites.Cell Death Differ.18, 1450–1456 (2011).
Martinez-Caballero, S. et al. Assembly of the mitochondrial apoptosis-induced channel, MAC.J. Biol. Chem.284, 12235–12245 (2009).
Peixoto, P. M., Ryu, S. Y., Bombrun, A., Antonsson, B. & Kinnally, K. W. MAC inhibitors suppress mitochondrial apoptosis.Biochem. J.423, 381–387 (2009).
Dejean, L. M. et al. MAC and Bcl-2 family proteins conspire in a deadly plot.Biochim. Biophys. Acta1797, 1231–1238 (2010).
Amuthan, G. et al. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion.EMBO J.20, 1910–1920 (2001).A demonstration that a decrease in cancer cell mtDNA content and membrane potential increases cytosolic Ca2+, activates 'retrograde signalling', and increases epithelial–mesenchymal transition and cellular invasiveness.
Biswas, G. et al. A distinctive physiological role for IκBβ in the propagation of mitochondrial respiratory stress signaling.J. Biol. Chem.283, 12586–12594 (2008).
Guha, M., Srinivasan, S., Biswas, G. & Avadhani, N. G. Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress.J. Biol. Chem.282, 14536–14546 (2007).
Guha, M., Pan, H., Fang, J. K. & Avadhani, N. G. Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress.Mol. Biol. Cell20, 4107–4119 (2009).
Guha, M., Fang, J. K., Monks, R., Birnbaum, M. J. & Avadhani, N. G. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.Mol. Biol. Cell21, 3578–3589 (2010).
Guha, M., Tang, W., Sondheimer, N. & Avadhani, N. G. Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets.Biochim. Biophys. Acta1797, 1055–1065 (2010).
Fan, W., Lin, C. S., Potluri, P., Procaccio, V. & Wallace, D. C. MtDNA lineage analysis of mouse L cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination.Genes Dev.26, 384–394 (2012).
Park, J. S. et al. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis.Hum. Mol. Genet.18, 1578–1589 (2009).
Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis.Genes Dev.25, 460–470 (2011).
Goh, J. et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice.BMC Cancer11, 191 (2011).
Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APCMin./+ mice.Am. J. Pathol.180, 24–31 (2012).
Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria.Science308, 1909–1911 (2005).
Zu, X. L. & Guppy, M. Cancer metabolism: facts, fantasy, and fiction.Biochem. Biophys. Res. Commun.313, 459–465 (2004).
Bonuccelli, G. et al. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts.Cell Cycle9, 1960–1971 (2010).
Pavlides, S. et al. Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and “Neuron-Glia Metabolic Coupling”.Aging2, 185–199 (2010).
Castello-Cros, R. et al. Matrix remodeling stimulates stromal autophagy, “fueling” cancer cell mitochondrial metabolism and metastasis.Cell Cycle10, 2021–2034 (2011).This study shows that cancer cell ROS production inactivates stromal cell caveolin 1, thus inducing stromal lactate production that feeds cancer cell oxidative metabolism and growth, a process known as the 'reverse Warburg effect'.
Capparelli, C. et al. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production.Cell Cycle11, 2285–2302 (2012).
Pavlides, S. et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis.Antioxid. Redox Signal.16, 1264–1284 (2012).
Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology.Cell134, 112–123 (2008).
Phillips, D. et al. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload.Am. J. Physiol. Regul. Integr. Comp. Physiol.302, R1034–R1048 (2012).
Wallace, D. C. The epigenome and the mitochondrion: bioenergetics and the environment.Genes Dev.24, 1571–1573 (2010).
Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations.Science319, 958–962 (2008).
Hashizume, O. et al. Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development.Proc. Natl Acad. Sci. USA109, 10528–10533 (2012).
Oliver, N. A. & Wallace, D. C. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction.Mol. Cell. Biol.2, 30–41 (1982).
Acknowledgements
The author would like to thank L. Adang and M. Lott for their assistance in preparing this manuscript. This work was supported by the US National Institutes of Health (NIH) grants NS21328, NS070298, AG24373 and DK73691, and a Simons Foundation Grant 205844.
Author information
Authors and Affiliations
Childrens Hospital of Philadelphia, Director, Center for Mitochondrial and Epigenomic Medicine (CMEM), Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, 19104, Pennsylvania, USA
Douglas C. Wallace
- Douglas C. Wallace
You can also search for this author inPubMed Google Scholar
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Wallace, D. Mitochondria and cancer.Nat Rev Cancer12, 685–698 (2012). https://doi.org/10.1038/nrc3365
Published:
Issue Date:
This article is cited by
Ovarian cancer cells regulate their mitochondrial content and high mitochondrial content is associated with a poor prognosis
- Jil Weigelt
- Mariam Petrosyan
- Udo Schumacher
BMC Cancer (2024)
Prognosis prediction and risk stratification of breast cancer patients based on a mitochondria-related gene signature
- Yang Wang
- Ding-yuan Wang
- Bai-lin Zhang
Scientific Reports (2024)
p52-ZER6/IGF1R axis maintains cancer stem cell population to promote cancer progression by enhancing pro-survival mitophagy
- Wenfang Li
- Can Huang
- Shourong Wu
Oncogene (2024)
Artificial intelligence in pathological anatomy: digitization of the calculation of the proliferation index (Ki-67) in breast carcinoma
- Elmehdi Aniq
- Mohamed Chakraoui
- Naoual Mouhni
Artificial Life and Robotics (2024)
Construction of a mitochondria-targeted probe to monitor cysteine levels in cancer cells and zebrafish
- Meixia Tan
- Juan Duan
- Fang Ke
Photochemical & Photobiological Sciences (2024)