- Review Article
- Published:
Microtubules as a target for anticancer drugs
Nature Reviews Cancervolume 4, pages253–265 (2004)Cite this article
37kAccesses
53Altmetric
Key Points
Microtubules are highly dynamic cytoskeletal fibres that are composed of tubulin subunits. They show two types of non-equilibrium dynamics — treadmilling and dynamic instability — both of which are crucial to mitosis and cell division.
Dynamic microtubules continue to be one of the most successful cancer chemotherapeutic targets. Many new drugs that target microtubules are in clinical trials and large numbers of microtubule-active compounds are being developed.
Among the most successful microtubule-targeted chemotherapeutic drugs are paclitaxel and theVinca alkaloids, which were previously thought to work through opposite mechanisms. We now recognize that their most potent actions are suppression of microtubule dynamics, rather than increasing or decreasing microtubule-polymer mass.
Microtubule-active drugs generally bind to one of three main classes of sites on tubulin, the paclitaxel site, theVinca domain and the colchicine domain. Drugs that bind to the colchicine domain are undergoing intensive investigation as vascular-targeting agents for cancer therapy.
Development of resistance to microtubule-targeted drugs has several possible causes, some of which might involve changes in microtubule dynamics resulting from altered expression of tubulin isotypes, tubulin mutations, and altered expression or binding of microtubule-regulatory proteins.
Microtubule-targeted drugs can synergize with one another.
Understanding their modes of action might lead to improved dosing regimens and combinations with other microtubule-targeted drugs, as well as combinations with 'molecularly targeted' drugs.
Abstract
Highly dynamic mitotic-spindle microtubules are among the most successful targets for anticancer therapy. Microtubule-targeted drugs, including paclitaxel andVinca alkaloids, were previously considered to work primarily by increasing or decreasing the cellular microtubule mass. Although these effects might have a role in their chemotherapeutic actions, we now know that at lower concentrations, microtubule-targeted drugs can suppress microtubule dynamics without changing microtubule mass; this action leads to mitotic block and apoptosis. In addition to the expanding array of chemically diverse antimitotic agents, some microtubule-targeted drugs can act as vascular-targeting agents, rapidly depolymerizing microtubules of newly formed vasculature to shut down the blood supply to tumours.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Luduena, R. F. Multiple forms of tubulin: different gene products and covalent modifications.Int. Rev. Cytology178, 207–275 (1998).Comprehensive review of tubulin isotypes and post-translational modifications.
Verdier-Pinard, P. et al. Direct analysis of tubulin expression in cancer cell lines by electrospray ionization mass spectrometry.Biochemistry42, 12019–12027 (2003).Describes analysis of tubulin isotypes, mutations and post-translational modifications by liquid chromatography/electrospray-ionization mass spectrometry in paclitaxel-sensitive and -resistant cell lines.
Ligon, L. A., Shelly, S. S., Tokito, M. & Holzbaur, E. L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization.Mol. Biol. Cell14, 1405–1417 (2003).
Galmarini, C. M. et al. Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics.Br. J. Cancer88, 1793–1799 (2003).
Giodini, A. et al. Regulation of microtubule stability and mitotic progression by survivin.Cancer Res.62, 2462–2467 (2002).
Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers.Curr. Opin. Cell Biol.14, 18–24 (2002).
Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin.J. Biol. Chem.275, 20748–20753 (2000).
Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.J. Biol. Chem.276, 34753–34758 (2001).
Jordan, M. A. & Wilson, L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy.Curr. Opin. Cell Biol.10, 123–130 (1998).
Giannakakou, P., Sackett, D. & Fojo, T. Tubulin/microtubules: still a promising target for new chemotherapeutic agents.J. Natl Cancer Inst.92, 182–183 (2000).
Gerzon, K. inAnticancer Agents Based on Natural Product Models (eds Cassady, J. M. & Douros, J. D.) 271–317 (Academic, New York, 1980).
Wordeman, L. & Mitchison, T. J. inMicrotubules (eds Hyams, J. S. & Lloyd, C. W.) 287–302 (Wiley–Liss, New York, 1994).
Wilson, L. & Jordan, M. A. inMicrotubules (eds Hyams, J. S. & Lloyd, C. W.) 59–84 (Wiley–Liss, New York, 1994).
McIntosh, J. R. inMicrotubules (eds Hyams, J. S. & Lloyd, C. W.) 413–434 (Wiley–Liss, New York, 1994).
Waterman-Storer, C. & Salmon, E. D. Microtubule dynamics: treadmilling comes around again.Curr. Biol.7, 369–372 (1997).
Mitchison, T. J. & Kirschner, M. Dynamic instability of microtubule growth.Nature312, 237–242 (1984).
Margolis, R. L. & Wilson, L. Opposite end assembly and disassembly of microtubules at steady statein vitro.Cell13, 1–8 (1978).
Margolis, R. L. & Wilson, L. Microtubule treadmilling: what goes around comes around.Bioessays20, 830–836 (1998).
Rodionov, V. I. & Borisy, G. G. Microtubule treadmillingin vivo.Science275, 215–218 (1997).
Shaw, S. L., Kamyar, R. & Ehrhardt, D. W. Sustained microtubule treadmilling inArabidopsis cortical arrays.Science300, 1715–1718 (2003).
Panda, D., Miller, H. P. & Wilson, L. Rapid treadmilling of MAP-free brain microtubulesin vitro and its suppression by tau.Proc. Natl Acad. Sci. USA96, 12459–12464 (1999).
Chen, W. & Zhang, D. Kinetochore fibre dynamics outside the context of the spindle during anaphase.Nature Cell Biol.6, 227–231 (2004).Demonstration of importance of treadmilling in anaphase-chromosome poleward movement and the independence of treadmilling from the spindle matrix.
Wilson, L., Panda, D. & Jordan, M. A. Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators.Cell Struct. Funct.24, 329–335 (1999).
Nogales, E. Structural insights into microtubule function.Annu. Rev. Biophys. Biomol. Struct.30, 397–420 (2001).
Wilson, L. & Jordan, M. A. Microtubule dynamics: taking aim at a moving target.Chem. Biol.2, 569–573 (1995).
Lodish, H. et al.Molecular Cell Biology (W. H. Freeman, New York, 1999).
Panda, D., Miller, H. & Wilson, L. Determination of the size and chemical nature of the stabilizing cap at microtubule ends using modulators of polymerization dynamics.Biochemistry41, 1609–1617 (2002).
Caplow, M. & Fee, L. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.Biochemistry42, 2122–2126 (2003).
Panda, D., Miller, H. P. & Wilson, L. Rapid treadmilling of brain microtubules free of microtubule-associated proteinsin vitro and its suppression by tau.Proc. Natl Acad. Sci. USA96, 12459–12464 (1999).
Wittmann, T., Bokoch, G. & Waterman-Storer, C. Regulation of leading edge microtubule and actin dynamics downstream of Rac1.J. Cell Biol.161, 845–851 (2003).
Alli, E., Bash-Babula, J., Yang, J. -M. & Hait, W. N. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer.Cancer Res.62, 6864–6869 (2002).
McNally, F. Microtubule dynamics: new surprises from an old MAP.Curr. Biol.13, 597–599 (2003).
Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin.Dev. Cell5, 309–321 (2003).
Carvalho, P., Tirnauer, J. & Pellman, D. Surfing on microtubule ends.Trends Cell Biol.13, 229–237 (2003).
Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P. & Krek, W. Regulation of microtubule stability by the von Hippel–Lindau tumour suppressor protein pVHL.Nature Cell Biol.5, 64–70 (2003).
Komarova, Y., Akhmanova, A., Kojima, S., Galjart, N. & Borisy, G. Cytoplasmic linker proteins promote microtubule rescuein vivo.J. Cell Biol.159, 589–599 (2002).
Mitchison, T. J. Microtubule dynamics and kinetochore function in mitosis.Annu. Rev. Cell Biol.4, 527–549 (1988).
Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells.J. Cell Biol.99, 2175–2186 (1984).
Rusan, N. M., Fagerstrom, C. J., Yvon, A. -M. C. & Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein–α tubulin.Mol. Biol. Cell12, 971–980 (2001).
Pepperkok, R., Bre, M. H., Davoust, J. & Kreis, T. E. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts.J. Cell Biol.111, 3003–3012 (1990).
Zhai, Y., Kronebusch, P. J., Simon, P. M. & Borisy, G. G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis.J. Cell Biol.135, 201–214 (1996).
Hayden, J. J., Bowser, S. S. & Rieder, C. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt cells.J. Cell Biol.111, 1039–1045 (1990).Classic demonstration of the role of microtubule dynamic instability in the attachment of chromosomes to the mitotic spindle.
Jordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death.Cancer Res.56, 816–825 (1996).Demonstration that mitotic block by low concentrations of paclitaxel leads to apoptosis.
Rieder, C., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle.J. Cell Biol.127, 1301–1310 (1994).
Shelby, R. D., Hahn, K. M. & Sullivan, K. F. Dynamic elastic behavior of α-satellite DNA domains visualizedin situ in living human cells.J. Cell Biol.135, 545–557 (1996).
Mitchison, T. J. Poleward microtubule flux in the mitotic spindle; evidence from photoactivation of fluorescence.J. Cell Biol.109, 637–652 (1989).
Wilson, P. J. & Forer, A. Effects of nanomolar taxol on crane-fly spermatocyte spindles indicate that acetylation of kinetochore microtubules can be used as a marker of poleward tubulin flux.Cell Motil. Cytoskeleton37, 20–32 (1997).
Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint.Nature373, 630–632 (1995).
Nicklas, R. B., Ward, S. C. & Gorbsky, G. J. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint.J. Cell Biol.130, 929–939 (1995).
Gorbsky, G. J. Cell cycle checkpoints: arresting progress in mitosis.BioEssays19, 193–197 (1997).
Zhou, J. et al. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation.Mol. Pharmacol.63, 799–807 (2003).
Hamel, E. & Covell, D. G. Antimitotic peptides and depsipeptides.Curr. Med. Chem. Anti-Canc. Agents2, 19–53 (2002).
Hoffman, J. C. & Vaughn, K. C. Mitotic disrupter herbicides act by a single mechanism but vary in efficacy.Protoplasma179, 16–25 (1994).
Lacey, E. & Gill, J. H. Biochemistry of benzimidazole resistance.Acta Trop.56, 245–262 (1994).
Lobert, S., Ingram, J. & Correia, J. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly.Cancer Res.59, 4816–4822 (1999).
Cann, J. R. & Hinman, N. D. Interaction of chlorpromazine with brain microtubule subunit protein.Molec. Pharmacol.11, 256–267 (1975).
Boder, G. B., Paul, D. C. & Williams, D. C. Chlorpromazine inhibits mitosis of mammalian cells.Eur. J. Cell Biol.31, 349–353 (1983).
Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin.Curr. Med. Chem. Anti-Canc. Agents2, 1–17 (2002).
Jimenez-Barbero, J., Amat-Guerri, F. & Snyder, J. P. The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization.Curr. Med. Chem. Anti-Canc. Agents2, 91–122 (2002).
Jordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations.Proc. Natl Acad. Sci. USA90, 9552–9556 (1993).
Chen, J. -G. & Horwitz, S. B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs.Cancer Res.62, 1935–1938 (2002).
Yvon, A. -M., Wadsworth, P. & Jordan, M. A. Taxol suppresses dynamics of individual microtubules in living human tumor cells.Mol. Biol. Cell10, 947–949 (1999).First demonstration that suppression of microtubule dynamics in living cells by low concentrations of paclitaxel correlates with mitotic block.
Jordan, M. A. & Wilson, L. inMethods in Cell Biology, in Mitosis and Meiosis Vol.61 (ed. Rieder, C. L.) 267–295 (Academic, New York, 1998).
Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism.J. Cell Biol.122, 859–875 (1993).
Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work.Mol. Biol. Cell7, 1547–1558 (1996).
Johnson, I. S., Wright, H. F. & Svoboda, G. H. Experimental basis for clinical evaluation of anti-tumor principles derived fromVinca rosea Linn.J. Lab. Clin. Med. 54, 830–837 (1959).
Noble, R. L., Beer, C. T. & Cutts, J. H. Further biological activities of vincaleukoblastine: an alkaloid isolated fromVinca rosea (L.).Biochem. Pharmacol.1, 347–348 (1958).
Gidding, C. E., Kellie, S. J., Kamps, W. A. & de Graaf, S. S. Vincristine revisited.Crit. Rev. Oncol. Hematol.29, 267–287 (1999).
Quasthoff, S. & Hartung, H. P. Chemotherapy-induced peripheral neuropathy.J. Neurol.249, 9–17 (2002).
Sahenk, Z., Barohn, R., New, P. & Mendell, J. R. Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings.Arch. Neurol.51, 726–729 (1994).
Jordan, M. A., Thrower, D. & Wilson, L. Mechanism of inhibition of cell proliferation byVinca alkaloids.Cancer Res.51, 2212–2222 (1991).First demonstration that antimitotic mechanism ofVinca alkaloids does not require microtubule depolymerization.
Bai, R. B., Pettit, G. R. & Hamel, E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide andVinca alkaloid sites.J. Biol. Chem.265, 17141–17149 (1990).
Wilson, L., Jordan, M. A., Morse, A. & Margolis, R. L. Interaction of vinblastine with steady-state microtubulesin vitro.J. Mol. Biol.159, 125–149 (1982).
Jordan, M. A. & Wilson, L. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations.Biochemistry29, 2730–2739 (1990).
Na, G. C. & Timasheff, S. N. Thermodynamic linkage between tubulin self-association and the binding of vinblastine.Biochemistry19, 1347–1354 (1980).
Na, G. C. & Timasheff, S. N. Stoichiometry of the vinblastine-induced self-association of calf brain tubulin.Biochemistry19, 1347–1354 (1980).
Lobert, S. & Correia, J. inMethods in Enzymology Vol.323, (ed. Johnson, M.) 77–103 (Academic Press, 2000).
Jordan, M. A., Margolis, R. L., Himes, R. H. & Wilson, L. Identification of a distinct class of vinblastine binding sites on microtubules.J. Mol. Biol.187, 61–73 (1986).
Singer, W. D., Jordan, M. A., Wilson, L. & Himes, R. H. Binding of vinblastine to stabilized microtubules.Mol. Pharmacol.36, 366–370 (1989).
Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T.J. Am. Chem. Soc.93, 2325–2327 (1971).
Schiff, P. B., Fant, J. & Horwitz, S. B. Promotion of microtubule assemblyin vitro by taxol.Nature277, 665–667 (1979).Classic demonstration that paclitaxel enhances microtubule polymerization and stabilizes microtubules.
Horwitz, S. B. How to make taxol from scratch.Nature367, 593–594 (1994).
Von Hoff, D. D. The taxoids: same roots, different drugs.Semin. Oncol.24 (4 Suppl. 13), S13-3–S13-10 (1997).
Markman, M. Managing taxane toxicities.Support Care Cancer11, 144–147 (2003).
Nogales, E., Wolf, S. G., Khan, I. A., Luduena, R. F. & Downing, K. A. Structure of tubulin at 6.5Å and location of the taxol-binding site.Nature375, 424–427 (1995).First high-resolution determination of the structure of polymerized tubulin and the paclitaxel-binding site.
Derry, W. B., Wilson, L. & Jordan, M. A. Substoichiometric binding of taxol suppresses microtubule dynamics.Biochemistry34, 2203–2211 (1995).Mechanistic analysis of suppression of microtubule dynamics by paclitaxel.
Kelling, J., Sullivan, K., Wilson, L. & Jordan, M. A. Suppression of centromere dynamics by taxol in living osteosarcoma cells.Cancer Res.63, 2794–2801 (2003).
Pryor, D. E. et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity.Biochemistry41, 9109–9115 (2002).
Hastie, S. B. Interactions of colchicine with tubulin.Pharmacol. Ther.512, 377–401 (1991).
Skoufias, D. & Wilson, L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin–colchicine complexes.Biochemistry31, 738–746 (1992).
Tozer, G. M., Kanthou, C., Parkins, C. S. & Hill, S. A. The biology of the combretastatins as tumour vascular targeting agents.Int. J. Exp. Pathol.83, 21–38 (2002).Review of mechanism of action of combretastatins and their therapeutic potential.
Kanthou, C. & Tozer, G. M. The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells.Blood99, 2060–2069 (2002).
Tozer, G. M. et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability.Cancer Res.61, 6413–6422 (2001).
Prise, V. E., Honess, D. J., Stratford, M. R., Wilson, J. & Tozer, G. M. The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses.Int. J. Oncol.21, 717–726 (2002).
Davis, P. D. et al. ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature.Cancer Res.62, 7247–7253 (2002).
Dumontet, C. & Sikic, B. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death.J. Clin. Oncol.17, 1061–1070 (1999).
Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism.Oncogene22, 7468–7485 (2003).
Safa, A. R. Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators.Curr. Med. Chem. Anti-Canc. Agents4, 1–17 (2004).
Thomas, H. & Coley, H. M. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein.Cancer Control10, 159–165 (2003).
Geney, R., Ungureanu, M., Li, D. & Ojima, I. Overcoming multidrug resistance in taxane chemotherapy.Clin. Chem. Lab. Med.40, 918–925 (2002).
Orr, G. A., Verdier-Pinard, P., McDaid, H. & Horwitz, S. B. Mechanisms of taxol resistance related to microtubules.Oncogene22, 7280–7295 (2003).Comprehensive review of microtubule-related mechanisms of paclitaxel resistance.
Kavallaris, M. et al. Multiple microtubule alterations are associated withVinca alkaloid resistance in human leukemia cells.Cancer Res.61, 5803–5809 (2001).
Minotti, A. M., Barlow, S. B. & Cabral, F. Resistance to antimitotic drugs in Chinese hamster ovary cells correlated with changes in the level of polymerized tubulin.J. Biol. Chem.266, 3987–3994 (1991).
James, S. W., Silflow, C. D., Stroom, P. & Lefebvre, P. A. A mutation in the α1-tubulin gene ofChlamydomonas reinhardtii confers resistance to anti-microtubule herbicides.J. Cell Sci.106, 209–218 (1993).
Lee, W. -P. Purification and characterization of tubulin from parental and vincristine-resistant HOB1 lymphoma cells.Arch. Biochem. Biophys.319, 498–503 (1995).
Ohta, S. et al. Characterization of a taxol-resistant human small-cell lung cancer cell line.Jpn. J. Cancer Res.85, 290–297 (1994).
Laing, N. M. et al. Amplification of the ATP-binding cassette 2 transporter gene is functionally linked with enhanced efflux of estramustine in ovarian carcinoma cells.Cancer Res.58, 1332–1337 (1998).
Burkhart, C. A., Kavallaris, M. & Band Horwitz, S. The role of β-tubulin isotypes in resistance to antimitotic drugs.Biochim. Biophys. Acta.1471, O1–O9 (2001).
Dumontet, C. et al. Resistance to microtubule–targeted cytotoxins in a K562 leukemia cell variant is associated with altered tubulin expression.Elec. J. Oncol.2, 33–44 (1999).
Giannakakou, P. et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells.Proc. Natl Acad. Sci. USA97, 2904–2909 (2000).
Goncalves, A. et al. Resistance to taxol in lung cancer cells associated with increased microtubule dynamics.Proc. Natl Acad. Sci. USA98, 11737–11741 (2001).First demonstration of sensitivity of mitotic progression to precise regulation of microtubule dynamics and of the association of increased microtubule dynamics with paclitaxel resistance.
Haber, M. et al. Altered expression of Mβ2, the class II β-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance.J. Biol. Chem.270, 31269–31275 (1995).
Jaffrezou, J. -P. et al. Novel mechanism of resistance to paclitaxel in human K562 leukemia cells by combined selection with PSC833.Oncology Res.7, 517–527 (1995).
Kavallaris, M. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes.J. Clin. Invest.100, 1–12 (1997).
Poruchynsky, M. S. et al. Accompanying protein alterations in malignant cells with a microtubule- polymerizing drug-resistance phenotype and a primary resistance mechanism.Biochem. Pharmacol.62, 1469–1480 (2001).
Ranganathan, S. et al. Increase of βIII- and βIVa-tubulin isotypes in human prostate carcinoma cells as a result of estramustine resistance.Cancer Res.56, 2584–2589 (1996).
Verdier-Pinard, P. et al. Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry.Biochemistry42, 5349–5357 (2003).
Kavallaris, M., Burkhardt, C. A. & Horwitz, S. B. Antisense oligonucleotides to class III β-tubulin sensitize drug-resistant cells to Taxol.Br. J. Cancer80, 1020–1025 (1999).
Martello, L. A. et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines.Clin. Cancer Res.6, 1978–1987 (2000).
Martello, L. A. et al. Elevated levels of microtubule destabilizing factors in a taxol-resistant/dependent A549 cell line with an α-tubulin mutation.Cancer Res.63, 1207–1213 (2003).
Wendell, K. L., Wilson, L. & Jordan, M. A. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes.J. Cell Sci.104, 261–274 (1993).
Panda, D., Miller, H., Islam, K. & Wilson, L. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action.Proc. Natl Acad. Sci. USA94, 10560–10564 (1997).
Seidman, A., Scher, H. I., Petrylak, D., Derrshaw, D. D. & Curley, T. Estramustine and vinblastine: use of prostate specific antigen as a clinical trial end point for hormone refractory prostatic cancer.J. Urol.147, 931–934 (1992).
Hudes, G. R. et al. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer.J. Clin. Oncol.10, 1754–1761 (1992).
Hudes, G. R. et al. Paclitaxel plus estramustine in metastatic hormone-refractory prostate cancer.Semin. Oncol.22, 41–45 (1995).
Knick, V. C., Eberwein, D. & Miller, C. Vinorelbine tartrate and paclitaxel combinations: enhanced activity againstin vivo P388 murine leukemia cells.J. Natl Cancer Inst.87, 1072–1077 (1995).
Photiou, A., Shah, P., Leong, L., Moss, J. & Retsas, S.In vitro synergy of paclitaxel (Taxol) and vinorelbine (navelbine) against human melanoma cell lines.Eur. J. Cancer33, 463–470 (1997).
Dieras, V. et al. Docetaxel in combination with doxorubicin or vinorelbine.Eur. J. Cancer33 (Suppl 7), 20–22 (1997).
Garcia, P., Braguer, D., Carles, G. & Briand, C. Simultaneous combination of microtubule depolymerizing and stabilizing agents acts at low doses.Anticancer Drugs6, 533–544 (1995).
Giannakakou, P., Villalba, L., Li, H., Poruchynsky, M. & Fojo, T. Combinations of paclitaxel and vinblastine and their effects on tubulin polymerization and cellular cytotoxicity: characterization of a synergistic schedule.Int. J. Cancer75, 57–63 (1998).
Duflos, A., Kruczynski, A. & Barret, J. -M. Novel aspects of natural and modifiedVinca alkaloids.Curr. Med. Chem. Anti-Canc. Agents2, 55–70 (2002).
Plosker, G. L. & Figgitt, D. Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia.Drugs63, 803–843 (2003).
Sandler, A. B. Chemotherapy for small cell lung cancer.Semin. Oncol.30, 9–25 (2003).
Armitage, J. O. Overview of rational and individualized therapeutic strategies for non-Hodgkin's lymphomas.Clin. Lymphoma3, S5–S11 (2002).
Jassem, J. et al. Oral vinorelbine in combination with cisplatin: a novel active regimen in advanced non-small-cell lung cancer.Ann. Oncol.14, 1634–1639 (2003).
Rossi, A. et al. Single agent vinorelbine as first-line chemotherapy in elderly patients with advanced breast cancer.Anticancer Res.23, 1657–1664 (2003).
Seidman, A. D. Monotherapy options in the management of metastatic breast cancer.Semin. Oncol.30, 6–10 (2003).
Okouneva, T., Hill, B. T., Wilson, L. & Jordan, M. A. The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics.Mol. Cancer Ther.2, 427–436 (2003).
Panda, D. et al. Interaction of the antitumor compound cryptophycin-52 with tubulin.Biochemistry39, 14121–14127 (2000).
Kerksiek, K., Mejillano, M. R., Schwartz, R. E., Georg, G. I. & Himes, R. H. Interaction of cryptophycin 1 with tubulin and microtubules.FEBS Lett.377, 59–61 (1995).
Bai, R. B. et al. Halichondrin B and homohalichondrin B, marine natural products binding in theVinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data.J. Biol. Chem.266, 15882–15889 (1991).
Luduena, R. F., Roach, M. C., Prasad, V. & Pettit, G. R. Interaction of halichondrin B and homohalichondrin B with bovine brain tubulin.Biochem. Pharmacol.45, 421–427 (1993).
Towle, M. J. et al.In vitro andin vivo anticancer activities of synthetic macrocyclic ketone analogs of halichondrin B.Cancer Res.61, 1013–1021 (2001).
Hamel, E. Natural products which interact with tubulin in theVinca domain: maytansine, rhizoxin, phomopsin A, Dolastatins 10 and 15 and halichondrin B.Pharmacol. Ther.55, 31–51 (1992).
Bai, R., Durso, N. A., Sackett, D. L. & Hamel, E. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1.Biochemistry38, 14302–14310 (1999).
Loganzo, F. et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistancein vitro andin vivo.Cancer Res.63, 1838–1845 (2003).
Hamel, E. et al. Antitumor 2,3-dihydro-2-(aryl)-4(1H)-quinazolinone derivatives. Interactions with tubulin.Biochem. Pharmacol.51, 53–59 (1996).
Mabjeesh, N. J. et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF.Cancer Cell3, 363–375 (2003).
Lakhani, N. J., Sarkar, M. A., Venitz, J. & Figg, W. D. 2-Methoxyestradiol, a promising anticancer agent.Pharmacotherapy23, 165–172 (2003).
Yoshimatsu, K., Yamaguchi, A., Yoshino, H., Koyanagi, N. & Kitoh, K. Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin.Cancer Res.57, 3208–3213 (1997).
Manfredi, J. J., Parness, J. & Horwitz, S. B. Taxol binds to cell microtubules.J. Cell Biol.94, 688–696 (1982).
Parness, J. & Horwitz, S. B. Taxol binds to polymerized tubulinin vitro.J. Cell Biol.91, 479–487 (1981).
Diaz, J. F. & Andreu, J. M. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition.Biochemistry32, 2747–2755 (1993).
Belani, C. P., Langer, C. TAX 326 Study Group. First-line chemotherapy for NSCLC: an overview of relevant trials.Lung Cancer38 (Suppl. 4), 13–19 (2002).
Fossella, F. V., Lynch, T. & Shepherd, F. A. Second line chemotherapy for NSCLC: establishing a gold standard.Lung Cancer38, 5–12 (2002).
Bollag, D. M. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action.Cancer Res.55, 2325–2333 (1995).
Wartmann, M. & Altmann, K. H. The biology and medicinal chemistry of epothilones.Curr. Med. Chem. Anti-Canc. Agents2, 123–148 (2002).
Lee, F. Y. et al. BMS-247550: a novel epothilone analog with a mode of action similar to apclitaxel but possessing superior sntiumor efficacy.Clin. Cancer Res.7, 1429–1437 (2001).
Kamath, K. & Jordan, M. A. Suppression of microtubule dynamics by epothilone B in living MCF7 cells.Cancer Res.63, 6026–6031 (2003).
ter Haar, E. et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol.Biochemistry35, 243–250 (1996).
Honore, S. et al. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation.Mol. Cancer Ther.2, 1303–1311 (2003).
Hung, D. T., Chen, J. & Schreiber, S. L. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest.Chem. Biol.3, 287–293 (1996).
Kavallaris, M., Verrills, N. M. & Hill, B. T. Anticancer therapy with novel tubulin-interacting drugs.Drug Resist. Update4, 392–401 (2001).
Kowalski, R. J. et al. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells.Mol. Pharmacol.52, 613–622 (1997).
Smaletz, O. et al. Pilot study of epothilone B analog (BMS–247550) and estramustine phosphate in patients with progressive metastatic prostate cancer following castration.Ann. Oncol.14, 1518–1524 (2003).
Kelly, W. et al. Dose escalation study of intravenous estramustine phosphate in combination with Paclitaxel and Carboplatin in patients with advanced prostate cancer.Clin. Cancer Res.9, 2098–2107 (2003).
Hudes, G. et al. Phase I clinical and pharmacologic trial of intravenous estramustine phosphate.J. Clin. Oncol.20, 1115–1127 (2002).
Dahllof, B., Billstron, A., Cabral, F. & Hartley-Asp, B. Estramustine depolymerizes microtubules by binding to tubulin.Cancer Res.53, 4573–4581 (1993).
Acknowledgements
We thank K. Kamath for critical reading of the manuscript. Supported by grants from the National Institutes of Health.
Author information
Authors and Affiliations
University of California Santa Barbara, Santa Barbara, 93106, California, USA
Mary Ann Jordan & Leslie Wilson
- Mary Ann Jordan
You can also search for this author inPubMed Google Scholar
- Leslie Wilson
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMary Ann Jordan.
Ethics declarations
Competing interests
The authors receive reasearch money or materials from Eli Lilly company, Pierre Fabre Centre de Recherche, Aventis, Novartis and Eisai Research Institute.
Related links
Related links
DATABASES
Cancer.gov
LocusLink
Rights and permissions
About this article
Cite this article
Jordan, M., Wilson, L. Microtubules as a target for anticancer drugs.Nat Rev Cancer4, 253–265 (2004). https://doi.org/10.1038/nrc1317
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative