Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Protocols
  • Protocol
  • Published:

Quantitative analysis of chromosome conformation capture assays (3C-qPCR)

Nature Protocolsvolume 2pages1722–1733 (2007)Cite this article

Abstract

Chromosome conformation capture (3C) technology is a pioneering methodology that allowsin vivo genomic organization to be explored at a scale encompassing a few tens to a few hundred kilobase-pairs. Understanding the folding of the genome at this scale is particularly important in mammals where dispersed regulatory elements, like enhancers or insulators, are involved in gene regulation. 3C technology involves formaldehyde fixation of cells, followed by a polymerase chain reaction (PCR)-based analysis of the frequency with which pairs of selected DNA fragments are crosslinked in the population of cells. Accurate measurements of crosslinking frequencies require the best quantification techniques. We recently adapted the real-time TaqMan PCR technology to the analysis of 3C assays, resulting in a method that more accurately determines crosslinking frequencies than current semiquantitative 3C strategies that rely on measuring the intensity of ethidium bromide-stained PCR products separated by gel electrophoresis. Here, we provide a detailed protocol for this method, which we have named 3C-qPCR. Once preliminary controls and optimizations have been performed, the whole procedure (3C assays and quantitative analyses) can be completed in 7–9 days.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the principles of 3C and qPCR.
Figure 2: 3C-qPCR analysis of long-distance interactions at the mouse imprintedIgf2/H19 locus.

Similar content being viewed by others

References

  1. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactionsin vivo.Nat. Genet.32, 623–626 (2002).

    Article CAS  Google Scholar 

  2. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation.Science295, 1306–1311 (2002).

    Article CAS  Google Scholar 

  3. Dekker, J. A closer look at long-range chromosomal interactions.Trends Biochem. Sci.28, 277–280 (2003).

    Article CAS PubMed Central  Google Scholar 

  4. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic lociin vivo.Methods Enzymol.375, 493–507 (2004).

    Article CAS PubMed Central  Google Scholar 

  5. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus.Mol. Cell10, 1453–1465 (2002).

    Article CAS  Google Scholar 

  6. Dostie, J. & Dekker, J. Mapping networks of physical interactions between genomic elements using 5C technology.Nat. Protoc.2, 988–1002 (2007).

    Article CAS  Google Scholar 

  7. Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.Genome Res.16, 1299–1309 (2006).

    Article CAS PubMed Central  Google Scholar 

  8. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice.Cell126, 403–413 (2006).

    Article CAS  Google Scholar 

  9. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C).Nat. Genet.38, 1348–1354 (2006).

    Article CAS  Google Scholar 

  10. Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology.Chromosome Res.14, 477–495 (2006).

    Article  Google Scholar 

  11. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions.Nat. Genet.38, 1341–1347 (2006).

    Article CAS  Google Scholar 

  12. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR.Genome Res.6, 986–994 (1996).

    Article CAS  Google Scholar 

  13. Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W. & Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization.PCR Methods Appl.4, 357–362 (1995).

    Article CAS PubMed Central  Google Scholar 

  14. Lutfalla, G. & Uze, G. Performing quantitative reverse-transcribed polymerase chain reaction experiments.Methods Enzymol.410, 386–400 (2006).

    Article CAS PubMed Central  Google Scholar 

  15. Vernimmen, D., De Gobbi, M., Sloane-Stanley, J.A., Wood, W.G. & Higgs, D.R. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression.EMBO J.26, 2041–2051 (2007).

    Article CAS PubMed Central  Google Scholar 

  16. Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus.Genes Dev.20, 2349–2354 (2006).

    Article CAS PubMed Central  Google Scholar 

  17. Holland, P.M., Abramson, R.D., Watson, R. & Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5′— —3′ exonuclease activity ofThermus aquaticus DNA polymerase.Proc. Natl. Acad. Sci. USA88, 7276–7280 (1991).

    Article CAS PubMed Central  Google Scholar 

  18. Dekker, J. The three “C”s of chromosome conformation capture: controls, controls, controls.Nat. Methods3, 17–21 (2006).

    Article CAS  Google Scholar 

  19. Palstra, R.J. et al. The beta-globin nuclear compartment in development and erythroid differentiation.Nat. Genet.35, 190–194 (2003).

    Article CAS  Google Scholar 

  20. Weber, M. et al. A real-time polymerase chain reaction assay for quantification of allele ratios and correction of amplification bias.Anal. Biochem.320, 252–258 (2003).

    Article CAS PubMed Central  Google Scholar 

  21. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2.Proc. Natl. Acad. Sci. USA103, 10684–10689 (2006).

    Article CAS PubMed Central  Google Scholar 

  22. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops.Nat. Genet.36, 889–893 (2004).

    Article CAS  Google Scholar 

  23. Milligan, L. et al. H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell differentiation.Oncogene19, 5810–5816 (2000).

    Article CAS PubMed Central  Google Scholar 

  24. Leighton, P.A., Saam, J.R., Ingram, R.S., Stewart, C.L. & Tilghman, S.M. An enhancer deletion affects both H19 and Igf2 expression.Genes Dev.9, 2079–2089 (1995).

    Article CAS PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Robert Feil and Franck Court for discussion and comments on the manuscript. This work was supported by grants from the Association pour la Recherche contre le Cancer (ARC contract no. 3279), the “GIS Longévité” (contract no. GISLO401), the “Fond National de la Science” (ACI jeune chercheur) given to T. Forné and by funds from the “Centre National de la Recherche Scientifique” (CNRS). C.B. was supported by an ARC fellowship (JR/MLD/MDV—P05/2 and P06/2). W.L. was supported by grants from the Dutch Scientific Organization (NWO) (016-006-026) and (912-04-082). J.D. was supported by a grant from the NIH (HG003143).

Author information

Authors and Affiliations

  1. UMR5535 CNRS-UMII; IFR122; Institut de Génétique Moléculaire de Montpellier; IGMM,

    Hélène Hagège, Caroline Braem, Guy Cathala & Thierry Forné

  2. IFR122, 1919, Route de Mende, Montpellier Cedex 5, 34293, France

    Hélène Hagège, Caroline Braem, Guy Cathala & Thierry Forné

  3. Department of Cell Biology and Genetics, Erasmus MC, PO Box 2040, Rotterdam, 3000, CA, The Netherlands

    Petra Klous, Erik Splinter & Wouter de Laat

  4. Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 01605-0103, Massachusetts, USA

    Job Dekker

Authors
  1. Hélène Hagège

    You can also search for this author inPubMed Google Scholar

  2. Petra Klous

    You can also search for this author inPubMed Google Scholar

  3. Caroline Braem

    You can also search for this author inPubMed Google Scholar

  4. Erik Splinter

    You can also search for this author inPubMed Google Scholar

  5. Job Dekker

    You can also search for this author inPubMed Google Scholar

  6. Guy Cathala

    You can also search for this author inPubMed Google Scholar

  7. Wouter de Laat

    You can also search for this author inPubMed Google Scholar

  8. Thierry Forné

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toWouter de Laat orThierry Forné.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Hagège, H., Klous, P., Braem, C.et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR).Nat Protoc2, 1722–1733 (2007). https://doi.org/10.1038/nprot.2007.243

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp