Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Neuropsychopharmacology
  • Neuropsychopharmacology Reviews
  • Published:

Normal Development of Brain Circuits

Neuropsychopharmacologyvolume 35pages147–168 (2010)Cite this article

Abstract

Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs.

Similar content being viewed by others

Log in or create a free account to read this content

Gain free access to this article, as well as selected content from this journal and more onnature.com

or

References

  • Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GHet al (2002). A developmental fMRI study of the Stroop color-word task.Neuroimage16: 61–75.

    PubMed  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994). The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex.Annu Rev Neurosci17: 185–218.

    CAS PubMed  Google Scholar 

  • Andersen SL (2003). Trajectories of brain development: point of vulnerability or window of opportunity?Neurosci Biobehav Rev27: 3–18.

    PubMed  Google Scholar 

  • Arnett J (1992). Reckless behavior in adolescence: a developmental perspective.Dev Rev12: 339–373.

    Google Scholar 

  • Ashtari M, Cervellione KL, Hasan KM, Wu J, McIlree C, Kester Het al (2007). White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study.Neuroimage35: 501–510.

    PubMed  Google Scholar 

  • Atkinson J (1984). Human visual development over the first 6 months of life. A review and a hypothesis.Hum Neurobiol3: 61–74.

    CAS PubMed  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001). Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury.J Neurosci21: 1302–1312.

    CAS PubMed PubMed Central  Google Scholar 

  • Baddele AD (1986).Working Memory. Oxford University Press: New York.

    Google Scholar 

  • Bagni C, Greenough WT (2005). From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome.Nat Rev Neurosci6: 376–387.

    CAS PubMed  Google Scholar 

  • Bansal R, Chung Y, Dong Z, Duan Y, Gerber A, Hao Xet al (2007). Neuroimaging methods in the study of childhood psychiatric disorders. In: Martin A, Volkmar FR, Lewis M (eds).Lewiss Child and Adolescent Psychiatry: A Comprehensive Textbook, 4th edn. Lippincott, Williams & Wilkins: Baltimore, MD. pp 214–234.

    Google Scholar 

  • Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988). Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.Radiology166: 173–180.

    CAS PubMed  Google Scholar 

  • Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy Aet al (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study.Cereb Cortex15: 1848–1854.

    PubMed  Google Scholar 

  • Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Nuechterlein KH, Mintz J (2003). White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study.Arch Neurol60: 393–398.

    PubMed  Google Scholar 

  • Bayer SA, Altman J (1990). Development of layer I and the subplate in the rat neocortex.Exp Neurol107: 48–62.

    CAS PubMed  Google Scholar 

  • Becker LE, Armstrong DL, Chan F, Wood MM (1984). Dendritic development in human occipital cortical neurons.Brain Res315: 117–124.

    CAS PubMed  Google Scholar 

  • Beckmann C, Deluca M, Devlin J, Smith S (2005). Investigations into resting-state connectivity using independent component analysis.Philos Trans R Soc B Biol Sci360: 1001–1013.

    Google Scholar 

  • Bell MA, Fox NA (1992). The relations between frontal brain electrical activity and cognitive development during infancy.Child Dev63: 1142–1163.

    CAS PubMed  Google Scholar 

  • Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004). Autism and abnormal development of brain connectivity.J Neurosci24: 9228–9231.

    CAS PubMed PubMed Central  Google Scholar 

  • Ben Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997). GABA A, NMDA and AMPA receptors: a developmentally regulated ‘menage a trois’.Trends Neurosci20: 523–529.

    CAS PubMed  Google Scholar 

  • Ben Bashat D, Ben Sira L, Graif M, Pianka P, Hendler T, Cohen Yet al (2005). Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images.J Magn Reson Imaging21: 503–511.

    PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood.Arch Gen Psychiatry51: 477–484.

    CAS PubMed  Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L (2000). Critical periods during sensory development.Curr Opin Neurobiol10: 138–145.

    CAS PubMed  Google Scholar 

  • Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM, Barkovich AJet al (2005). Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants.Neuroimage27: 862–871.

    PubMed  Google Scholar 

  • Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson Tet al (2006). Neocortical neurogenesis in humans is restricted to development.Proc Natl Acad Sci USA103: 12564–12568.

    CAS PubMed PubMed Central  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW (1999). Conceptual processing during the conscious resting state. A functional MRI study.J Cogn Neurosci11: 80–95.

    CAS PubMed  Google Scholar 

  • Binzegger T, Douglas R, Martin KA (2004). A quantitative map of the circuit of cat primary visual cortex.J Neurosci24: 8441–8453.

    CAS PubMed PubMed Central  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.Magn Reson Med34: 537–541.

    CAS PubMed  Google Scholar 

  • Blaschke AJ, Staley K, Chun J (1996). Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex.Development122: 1165–1174.

    CAS PubMed  Google Scholar 

  • Bourgeois JP (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex.Acta Paediatr Suppl422: 27–33.

    CAS PubMed  Google Scholar 

  • Bourgeois JP, Goldman-Rakic PS, Rakic P (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys.Cereb Cortex4: 78–96.

    CAS PubMed  Google Scholar 

  • Bourgeois JP, Rakic P (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage.J Neurosci13: 2801–2820.

    CAS PubMed PubMed Central  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987). Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination.J Neuropathol Exp Neurol46: 283–301.

    CAS PubMed  Google Scholar 

  • Brody LR (1981). Visual short-term cued recall memory in infancy.Child Dev52: 242–250.

    CAS PubMed  Google Scholar 

  • Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI.Neuron33: 301–311.

    CAS PubMed PubMed Central  Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008). Development of the human cerebral cortex: Boulder Committee revisited.Nat Rev Neurosci9: 110–122.

    CAS PubMed  Google Scholar 

  • Cady EB, Penrice J, Amess PN, Lorek A, Wylezinska M, Aldridge RFet al (1996). Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain.Magn Reson Med36: 878–886.

    CAS PubMed  Google Scholar 

  • Carpenter GL, Stacks AM (2009). Developmental effects of exposure to intimate partner violence in early childhood: a review of the literature.Children Youth Serv Rev31: 831–839.

    Google Scholar 

  • Casey BJ, Cohen JD, Jezzard P, Turner R, Noll DC, Trainor RJet al (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI.Neuroimage2: 221–229.

    CAS PubMed  Google Scholar 

  • Casey BJ, Jones RM, Hare TA (2008). The adolescent brain.Ann NY Acad Sci1124: 111–126.

    CAS PubMed  Google Scholar 

  • Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JNet al (1997). A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task.J Cogn Neurosci9: 835–847.

    CAS PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington Het al (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.Science301: 386–389.

    CAS PubMed  Google Scholar 

  • Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers.Neurosci Biobehav Rev29: 399–419.

    CAS PubMed  Google Scholar 

  • Champod AS, Petrides M (2007). Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes.Proc Natl Acad Sci USA104: 14837–14842.

    CAS PubMed PubMed Central  Google Scholar 

  • Changeux JP, Danchin A (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks.Nature264: 705–712.

    CAS PubMed  Google Scholar 

  • Chao D, Ma L, Shen K (2009). Transient cell–cell interactions in neural circuit formation.Nat Rev Neurosci10: 262–271.

    CAS PubMed PubMed Central  Google Scholar 

  • Chugani HT (1994). Development of regional brain glucose metabolism in relation to behavior and plasticity. In: Dawson G, Fischer KW (eds).Human Behavior and the Developing Brain. Guilford: New York. pp 153–175.

    Google Scholar 

  • Chugani HT, Phelps ME (1986). Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography.Science231: 840–843.

    CAS PubMed  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987). Positron emission tomography study of human brain functional development.Ann Neurol22: 487–497.

    CAS PubMed  Google Scholar 

  • Citri A, Malenka R (2008). Synaptic plasticity: multiple forms, functions, and mechanisms.Neuropsychopharmacology33: 18–41.

    PubMed  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008). The reorienting system of the human brain: from environment to theory of mind.Neuron58: 306–324.

    CAS PubMed PubMed Central  Google Scholar 

  • Corbetta M, Shulman GL (2002). Control of goal-directed and stimulus-driven attention in the brain.Nat Rev Neurosci3: 201–215.

    CAS PubMed  Google Scholar 

  • Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas Bet al (2000). Normal brain development and aging: quantitative analysis atin vivo MR imaging in healthy volunteers.Radiology216: 672–682.

    CAS PubMed  Google Scholar 

  • Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZDet al (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study.Neurology57: 245–254.

    CAS PubMed  Google Scholar 

  • Cowan WM, Fawcett JW, O’Leary DD, Stanfield BB (1984). Regressive events in neurogenesis.Science225: 1258–1265.

    CAS PubMed  Google Scholar 

  • Crone E, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA (2006). Neurocognitive development of the ability to manipulate information in working memory.Proc Natl Acad Sci USA103: 9315–9320.

    CAS PubMed PubMed Central  Google Scholar 

  • Csikszentmihalyi M, Larson R, Prescott S (1977). The ecology of adolescent activity and experience.Youth Adolesc6: 281–294.

    CAS  Google Scholar 

  • D’Esposito M (2007). From cognitive to neural models of working memory.Philos Trans R Soc Lond B Biol Sci362: 761–772.

    PubMed PubMed Central  Google Scholar 

  • Damoiseaux J, Rombouts S, Barkhof F, Scheltens P, Stam C, Smith Set al (2006). Consistent resting-state networks across healthy subjects.Proc Natl Acad Sci103: 13848–13853.

    CAS PubMed PubMed Central  Google Scholar 

  • Davidson MC, Amso D, Anderson LC, Diamond A (2006). Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching.Neuropsychologia44: 2037–2078.

    PubMed PubMed Central  Google Scholar 

  • de Graaf-Peters VB, Hadders-Algra M (2006). Ontogeny of the human central nervous system: what is happening when?Early Hum Dev82: 257–266.

    PubMed  Google Scholar 

  • de la Rosa EJ, de Pablo F (2000). Cell death in early neural development: beyond the neurotrophic theory.Trends Neurosci23: 454–458.

    CAS PubMed  Google Scholar 

  • de Vries JI, Visser GH, Prechtl HF (1985). The emergence of fetal behaviour. II. Quantitative aspects.Early Hum Dev12: 99–120.

    CAS PubMed  Google Scholar 

  • DeFelipe J, Farinas I (1992). The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs.Prog Neurobiol39: 563–607.

    CAS PubMed  Google Scholar 

  • Dekaban AS (1978). Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights.Ann Neurol4: 345–356.

    CAS PubMed  Google Scholar 

  • Deluca M, Beckmann C, Destefano N, Matthews P, Smith S (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain.NeuroImage29: 1359–1367.

    CAS  Google Scholar 

  • Demetriou A, Christou C, Spanoudis G, Platsidou M (2002). The development of mental processing: efficiency, working memory, and thinking.Monogr Soc Res Child Dev67: 1–156.

    Google Scholar 

  • Devys D, Biancalana V, Rousseau F, Boue J, Mandel JL, Oberle I (1992). Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development.Am J Med Genet43: 208–216.

    CAS PubMed  Google Scholar 

  • Diamond A (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys.Ann NY Acad Sci608: 267–309; discussion 309–317.

    CAS PubMed  Google Scholar 

  • Diamond A (1995). Guidelines for the study of brain behavior relations during development. In: Harvey L, Eisenberg H (eds).Frontal Lobe Dysfunction. Oxford University Press: New York. pp 339–378.

    Google Scholar 

  • Douglas RJ, Martin KA (2004). Neuronal circuits of the neocortex.Annu Rev Neurosci27: 419–451.

    CAS PubMed  Google Scholar 

  • Dubin MJ, Maia TV, Peterson BS (2010). Cognitive control in the service of self-regulation. In: Koob GF, Le Moal M, Thompson RF (eds).The Encyclopedia of Behavioral Neuroscience. Elsevier: Amsterdam, Netherlands.

    Google Scholar 

  • Durston S, Davidson MC, Tottenham N, Galvan A, Spicer J, Fossella JAet al (2006). A shift from diffuse to focal cortical activity with development.Dev Sci9: 1–8.

    PubMed  Google Scholar 

  • Ehrlich I, Malinow R (2004). Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.J Neurosci24: 916–927.

    CAS PubMed PubMed Central  Google Scholar 

  • Ernst M, Fudge J (2009). A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes.Neurosci Biobehav Rev33: 367–382.

    PubMed  Google Scholar 

  • Ernst M, Nelson E, Jazbec S, Mcclure E, Monk C, Leibenluft Eet al (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents.NeuroImage25: 1279–1291.

    PubMed  Google Scholar 

  • Eyre JA, Taylor JP, Villagra F, Smith M, Miller S (2001). Evidence of activity-dependent withdrawal of corticospinal projections during human development.Neurology57: 1543–1554.

    CAS PubMed  Google Scholar 

  • Fair D, Dosenbach N, Church JA, Cohen A, Brahmbhatt S, Miezin Fet al (2007). Development of distinct control networks through segregation and integration.Proc Natl Acad Sci104: 13507–13512.

    CAS PubMed PubMed Central  Google Scholar 

  • Feinberg I (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?J Psychiatr Res17: 319–334.

    PubMed  Google Scholar 

  • Finlay BL, Darlington RB (1995). Linked regularities in the development and evolution of mammalian brains.Science268: 1578–1584.

    CAS PubMed  Google Scholar 

  • Fogliarini C, Chaumoitre K, Chapon F, Fernandez C, Levrier O, Figarella-Branger Det al (2005). Assessment of cortical maturation with prenatal MRI. Part I: Normal cortical maturation.Eur Radiol15: 1671–1685.

    PubMed  Google Scholar 

  • Fox M, Corbetta M, Snyder AZ, Vincent JL, Raichle M (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.Proc Natl Acad Sci USA103: 10046–10051.

    CAS PubMed PubMed Central  Google Scholar 

  • Fox M, Raichle M (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.Nat Rev Neurosci8: 700–711.

    CAS PubMed  Google Scholar 

  • Fox M, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle M (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks.Proc Natl Acad Sci USA102: 9673–9678.

    CAS PubMed PubMed Central  Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat.Science286: 1155–1158.

    CAS PubMed  Google Scholar 

  • Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz Het al (2007). Resting-state networks in the infant brain.Proc Natl Acad Sci USA104: 15531–15536.

    CAS PubMed PubMed Central  Google Scholar 

  • Friauf E, McConnell SK, Shatz CJ (1990). Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex.J Neurosci10: 2601–2613.

    CAS PubMed PubMed Central  Google Scholar 

  • Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover Get al (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents.J Neurosci26: 6885–6892.

    CAS PubMed PubMed Central  Google Scholar 

  • Gao W, Lin W, Chen Y, Gerig G, Smith JK, Jewells Vet al (2009). Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain.AJNR Am J Neuroradiol30: 290–296.

    CAS PubMed PubMed Central  Google Scholar 

  • Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JFet al (2001). Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging.AJNR Am J Neuroradiol22: 184–189.

    CAS PubMed PubMed Central  Google Scholar 

  • Geier C, Luna B (2009). The maturation of incentive processing and cognitive control.Pharmacol Biochem Behav89: 1–10.

    Google Scholar 

  • Geier CF, Garver K, Terwilliger R, Luna B (2009). Development of working memory maintenance.J Neurophysiol101: 84–99.

    PubMed  Google Scholar 

  • Ghashghaei HT, Lai C, Anton ES (2007). Neuronal migration in the adult brain: are we there yet?Nat Rev Neurosci8: 141–151.

    CAS PubMed  Google Scholar 

  • Ghosh A, Antonini A, McConnell SK, Shatz CJ (1990). Requirement for subplate neurons in the formation of thalamocortical connections.Nature347: 179–181.

    CAS PubMed  Google Scholar 

  • Ghosh A, Shatz CJ (1992). Involvement of subplate neurons in the formation of ocular dominance columns.Science255: 1441–1443.

    CAS PubMed  Google Scholar 

  • Giedd J (1999). Brain development, IX: human brain growth.Am J Psychiatry156: 4.

    CAS PubMed  Google Scholar 

  • Giedd J, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos Aet al (1999). Brain development during childhood and adolescence: a longitudinal MRI study.Nat Neurosci2: 861–863.

    CAS PubMed  Google Scholar 

  • Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PLet al (1996a). Quantitative magnetic resonance imaging of human brain development: ages 4–18.Cereb Cortex6: 551–560.

    CAS PubMed  Google Scholar 

  • Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen Det al (1996b). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years.J Comp Neurol366: 223–230.

    CAS PubMed  Google Scholar 

  • Gilbert CD (1983). Microcircuitry of the visual cortex.Annu Rev Neurosci6: 217–247.

    CAS PubMed  Google Scholar 

  • Gilmore JH, Lin W, Corouge I, Vetsa YS, Smith JK, Kang Cet al (2007a). Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography.AJNR Am J Neuroradiol28: 1789–1795.

    CAS PubMed PubMed Central  Google Scholar 

  • Gilmore JH, Lin W, Gerig G (2006). Fetal and neonatal brain development.Am J Psychiatry163: 2046.

    PubMed  Google Scholar 

  • Gilmore JH, Lin W, Prastawa MW, Looney CB, Vetsa YS, Knickmeyer RCet al (2007b). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.J Neurosci27: 1255–1260.

    CAS PubMed PubMed Central  Google Scholar 

  • Giorgio A, Watkins KE, Douaud G, James AC, James S, De Stefano Net al (2008). Changes in white matter microstructure during adolescence.NeuroImage39: 52–61.

    CAS PubMed  Google Scholar 

  • Girard N, Raybaud C, du Lac P (1991). MRI study of brain myelination.J Neuroradiol18: 291–307.

    CAS PubMed  Google Scholar 

  • Goda Y, Davis GW (2003). Mechanisms of synapse assembly and disassembly.Neuron40: 243–264.

    CAS PubMed  Google Scholar 

  • Gogtay N, Giedd J, Lusk L, Hayashi KM, Greenstein D, Vaituzis ACet al (2004). Dynamic mapping of human cortical development during childhood through early adulthood.Proc Natl Acad Sci USA101: 8174–8179.

    CAS PubMed PubMed Central  Google Scholar 

  • Gohlke J, Griffith W, Faustman E (2006). Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human.Cerebral Cortex17: 2433–2442.

    Google Scholar 

  • Goldman-Rakic PS (1994). The issue of memory in the study of prefrontal functions. In: Thierry AM (ed).Motor and Cognitive Functions of the Prefrontal Cortex. Springer-Verlag: Berlin. pp 112–122.

    Google Scholar 

  • Gomez MR, Sampson JR, Whittemore VH (1999).Tuberous Sclerosis, 3rd edn. Oxford University Press: New York.

    Google Scholar 

  • Goodkin F (1980). The development of mature patterns of head-eye coordination in the human infant.Early Hum Dev4: 373–386.

    CAS PubMed  Google Scholar 

  • Graziani LJ, Weitzman ED, Velasco MS (1968). Neurologic maturation and auditory evoked responses in low birth weight infants.Pediatrics41: 483–494.

    CAS PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.Proc Natl Acad Sci USA100: 253–258.

    CAS PubMed  Google Scholar 

  • Gressens P (2000). Mechanisms and disturbances of neuronal migration.Pediatr Res48: 725–730.

    CAS PubMed  Google Scholar 

  • Gupta RK, Hasan KM, Trivedi R, Pradhan M, Das V, Parikh NAet al (2005). Diffusion tensor imaging of the developing human cerebrum.J Neurosci Res81: 172–178.

    CAS PubMed  Google Scholar 

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function.Proc Natl Acad Sci USA98: 4259–4264.

    CAS PubMed PubMed Central  Google Scholar 

  • Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002). Detection of functional connectivity using temporal correlations in MR images.Hum Brain Mapp15: 247–262.

    PubMed PubMed Central  Google Scholar 

  • Hanaoka S, Takashima S, Morooka K (1998). Study of the maturation of the child's brain using 31P-MRS.Pediatr Neurol18: 305–310.

    CAS PubMed  Google Scholar 

  • Hardan AY, Muddasani S, Vemulapalli M, Keshavan MS, Minshew NJ (2006). An MRI study of increased cortical thickness in autism.Am J Psychiatry163: 1290–1292.

    PubMed PubMed Central  Google Scholar 

  • Hatten ME (1993). The role of migration in central nervous system neuronal development.Curr Opin Neurobiol3: 38–44.

    CAS PubMed  Google Scholar 

  • Hatten ME (1999). Central nervous system neuronal migration.Annu Rev Neurosci22: 511–539.

    CAS PubMed  Google Scholar 

  • Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross Aet al (2005). Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years.Arch Gen Psychiatry62: 1366–1376.

    PubMed  Google Scholar 

  • Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MCet al (2006). Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood.Neuroimage29: 493–504.

    PubMed  Google Scholar 

  • Hitch GJ (2002). Developmental changes in working memory: a multicomponent view. In: Graf P, Ohta N (eds).Lifespan Development of Human Processing. MIT Press: Cambridge, Mass. pp 15–37.

    Google Scholar 

  • Holden KR (2007). Malnutrition and brain development.Semin Clin Neurol6: 19–36.

    Google Scholar 

  • Hooks BM, Chen C (2006). Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse.Neuron52: 281–291.

    CAS PubMed  Google Scholar 

  • Horska A, Kaufmann WE, Brant LJ, Naidu S, Harris JC, Barker PB (2002).In vivo quantitative proton MRSI study of brain development from childhood to adolescence.J Magn Reson Imaging15: 137–143.

    PubMed  Google Scholar 

  • Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards Let al (2006). White and gray matter development in human fetal, newborn and pediatric brains.NeuroImage33: 27–38.

    PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.J Physiol160: 106–154.

    CAS PubMed PubMed Central  Google Scholar 

  • Huber KM, Gallagher SM, Warren ST, Bear MF (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation.Proc Natl Acad Sci USA99: 7746–7750.

    CAS PubMed PubMed Central  Google Scholar 

  • Huberman AD (2007). Mechanisms of eye-specific visual circuit development.Curr Opin Neurobiol17: 73–80.

    CAS PubMed  Google Scholar 

  • Huisman TA, Martin E, Kubik-Huch R, Marincek B (2002). Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development.Eur Radiol12: 1941–1951.

    PubMed  Google Scholar 

  • Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FAet al (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns.Ann Neurol43: 224–235.

    PubMed  Google Scholar 

  • Huttenlocher PR (1979). Synaptic density in human frontal cortex—developmental changes and effects of aging.Brain Res163: 195–205.

    CAS PubMed  Google Scholar 

  • Huttenlocher PR (1984). Synapse elimination and plasticity in developing human cerebral cortex.Am J Ment Defic88: 488–496.

    CAS PubMed  Google Scholar 

  • Huttenlocher PR (1990). Morphometric study of human cerebral cortex development.Neuropsychologia28: 517–527.

    CAS PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997). Regional differences in synaptogenesis in human cerebral cortex.J Comp Neurol387: 167–178.

    CAS PubMed  Google Scholar 

  • Huttenlocher PR, De Courten C, Garey LJ, Van der Loos H (1982a). Synaptic development in human cerebral cortex.Int J Neurol16–17: 144–154.

    PubMed  Google Scholar 

  • Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H (1982b). Synaptogenesis in human visual cortex—evidence for synapse elimination during normal development.Neurosci Lett33: 247–252.

    CAS PubMed  Google Scholar 

  • Iai M, Yamamura T, Takashima S (1997). Early expression of proteolipid protein in human fetal and infantile cerebri.Pediatr Neurol17: 235–239.

    CAS PubMed  Google Scholar 

  • Innocenti GM (1981). Growth and reshaping of axons in the establishment of visual callosal connections.Science212: 824–827.

    CAS PubMed  Google Scholar 

  • Isaac JTR, Crair MC, Nicoll RA, Malenka RC (1997). Silent synapses during development of thalamocortical input.Neuron18: 269–280.

    CAS PubMed  Google Scholar 

  • Jernigan TL, Trauner DA, Hesselink JR, Tallal PA (1991). Maturation of human cerebrum observedin vivo during adolescence.Brain114 (Part 5): 2037–2049.

    PubMed  Google Scholar 

  • Jessell TM, Sanes JR (2000). Development. The decade of the developing brain.Curr Opin Neurobiol10: 599–611.

    CAS PubMed  Google Scholar 

  • Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993). Spatial working memory in humans as revealed by PET.Nature363: 623–625.

    CAS PubMed  Google Scholar 

  • Jouet M, Rosenthal A, Armstrong G, MacFarlane J, Stevenson R, Paterson Jet al (1994). X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene.Nat Genet7: 402–407.

    CAS PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Sanes JR (2000). Sensory experience and the fine-tuning of synaptic connections. In: Kandel ER, Schwartz JH, Jessell TM (eds).Principles of Neural Science, 4th edn. Appleton & Lange: Stamford, Conn. pp 1115–1130.

    Google Scholar 

  • Kanold PO (2004). Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections.Neuroreport15: 2149–2153.

    PubMed  Google Scholar 

  • Katz PS (2007). Evolution and development of neural circuits in invertebrates.Curr Opin Neurobiol17: 59–64.

    CAS PubMed  Google Scholar 

  • Kelly A, Di Martino A, Uddin L, Shehzad Z, Gee D, Reiss Pet al (2008). Development of anterior cingulate functional connectivity from late childhood to early adulthood.Cerebral Cortex19: 640–657.

    PubMed  Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants.J Neuropathol Exp Neurol47: 217–234.

    CAS PubMed  Google Scholar 

  • Klingberg T, Forssberg H, Westerberg H (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood.J Cogn Neurosci14: 1–10.

    PubMed  Google Scholar 

  • Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M (1999). Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study.Neuroreport10: 2817–2821.

    CAS PubMed  Google Scholar 

  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JKet al (2008). A structural MRI study of human brain development from birth to 2 years.J Neurosci28: 12176–12182.

    CAS PubMed PubMed Central  Google Scholar 

  • Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan Jet al (2005). Development of attentional networks: an fMRI study with children and adults.Neuroimage28: 429–439.

    PubMed  Google Scholar 

  • Kornack DR, Rakic P (1995). Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages.Neuron15: 311–321.

    CAS PubMed  Google Scholar 

  • Kostovic I, Goldman-Rakic PS (1983). Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain.J Comp Neurol219: 431–447.

    CAS PubMed  Google Scholar 

  • Kostovic I, Judas M, Petanjek Z, Sitlic G (1995). Ontogenesis of goal-directed behavior: anatomo-functional considerations.Int J Psychophysiol19: 517–527.

    Google Scholar 

  • Kostović I, Judas M, Rados M, Hrabac P (2002). Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging.Cereb Cortex12: 536–544.

    PubMed  Google Scholar 

  • Kostovic I, Molliver ME (1974). A new interpretation of the laminar development of cerebral cortex: synaptogenesis in different layers of the neopallium in the human fetus.Anat Rec178: 395.

    Google Scholar 

  • Kostovic I, Rakic P (1980). Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon.J Neurocytol9: 219–242.

    CAS PubMed  Google Scholar 

  • Kostovic I, Rakic P (1984). Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining.J Neurosci4: 25–42.

    CAS PubMed PubMed Central  Google Scholar 

  • Kostovic I, Rakic P (1990). Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain.J Comp Neurol297: 441–470.

    CAS PubMed  Google Scholar 

  • Kraemer HC, Yesavage JA, Taylor JL, Kupfer D (2000). How can we learn about developmental processes from cross-sectional studies, or can we?Am J Psychiatry157: 163–171.

    CAS PubMed  Google Scholar 

  • Kreis R, Ernst T, Ross BD (1993). Development of the human brain:in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.Magn Reson Med30: 424–437.

    CAS PubMed  Google Scholar 

  • Kreppner JM, Ruttler M, Beckett C, Castle J, Colvert E, Groothues Cet al (2007). Normality and impairment following profound early institutional deprivation: a longitudinal follow-up into early adolescence.Dev Psychol43: 931–946.

    PubMed  Google Scholar 

  • Kurtzberg D, Hilpert PL, Kreuzer JA, Vaughan Jr HG (1984). Differential maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birthweight infants.Dev Med Child Neurol26: 466–475.

    CAS PubMed  Google Scholar 

  • Kwon H, Reiss AL, Menon V (2002). Neural basis of protracted developmental changes in visuo-spatial working memory.Proc Natl Acad Sci USA99: 13336–13341.

    CAS PubMed PubMed Central  Google Scholar 

  • Ladher R, Schoenwolf GC (2005). Making a neural tube: neural tube induction and neurrulation. In: Mahendra SR, Jacobson M (eds).Developmental Neurobiology, 4th edn. Kluwer Academic/Plenum Publishing: New York. pp 1–20.

    Google Scholar 

  • Landing BH, Shankle WR, Hara J, Brannock J, Fallon JH (2002). The development of structure and function in the postnatal human cerebral cortex from birth to 72 months: changes in thickness of layers II and III co-relate to the onset of new age-specific behaviors.Pediatr Pathol Mol Med21: 321–342.

    CAS PubMed  Google Scholar 

  • Lenroot R, Gogtay N, Greenstein D, Wells E, Wallace G, Clasen Let al (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence.NeuroImage36: 1065–1073.

    PubMed  Google Scholar 

  • Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC (2000). An event-related functional MRI study of the stroop color word interference task.Cereb Cortex10: 552–560.

    CAS PubMed  Google Scholar 

  • Levi DM, Li RW (2009). Improving the performance of the amblyopic visual system.Philos Trans R Soc Lond B Biol Sci364: 399–407.

    PubMed  Google Scholar 

  • Levitt P (2003). Structural and functional maturation of the developing primate brain.J Pediatr143: S35–S45.

    CAS PubMed  Google Scholar 

  • Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu Het al (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging.Neuroreport17: 209–213.

    PubMed  Google Scholar 

  • Lin W, Zhu Q, Gao W, Chen Y, Toh CH, Styner Met al (2008). Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain.AJNR Am J Neuroradiol29: 1883–1889.

    CAS PubMed PubMed Central  Google Scholar 

  • Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Zet al (2008). Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla.NeuroImage40: 148–159.

    PubMed  Google Scholar 

  • Liu Y, Rao MS (2004). Glial progenitors in the CNS and possible lineage relationships among them.Biol Cell96: 279–290.

    CAS PubMed  Google Scholar 

  • Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, Garratt ANet al (2006). Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation.Cell125: 127–142.

    CAS PubMed PubMed Central  Google Scholar 

  • Lossi L, Merighi A (2003).In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS.Prog Neurobiol69: 287–312.

    CAS PubMed  Google Scholar 

  • Lu L, Leonard C, Thompson P, Kan E, Jolley J, Welcome Set al (2007). Normal developmental changes in inferior frontal gray matter are associated with improvement in phonological processing: a longitudinal MRI analysis.Cereb Cortex17: 1092–1099.

    PubMed  Google Scholar 

  • Luciana M, Nelson CA (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children.Neuropsychologia36: 273–293.

    CAS PubMed  Google Scholar 

  • Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004). Maturation of cognitive processes from late childhood to adulthood.Child Dev75: 1357–1372.

    PubMed  Google Scholar 

  • Luna B, Thulborn KR, Munoz DP, Merriam EP, Garver KE, Minshew NJet al (2001). Maturation of widely distributed brain function subserves cognitive development.Neuroimage13: 786–793.

    CAS PubMed  Google Scholar 

  • Lund JS, Lewis DA (1993). Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics.J Comp Neurol328: 282–312.

    CAS PubMed  Google Scholar 

  • Maia T, Cooney R, Peterson B (2008). The neural bases of obsessive-compulsive disorder in children and adults.Develop Psychopathol20: 1251–1283.

    Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage.Development127: 5253–5263.

    CAS PubMed  Google Scholar 

  • Marin-Padilla M (1970). Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. I. The sequential development of the cortical layers.Brain Res23: 167–183.

    CAS PubMed  Google Scholar 

  • Marin-Padilla M (1971). Early prenatal ontogenesis of the cerebral cortex neocortex of the Felix domestica. A Golgi study. I. The primordial neocortical organization.Z Anat Entwicklungsgesch134: 117–145.

    CAS PubMed  Google Scholar 

  • Marin-Padilla M (1978). Dual origin of the mammalian neocortex and evolution of the cortical plate.Anat Embryol152: 109–126.

    CAS  Google Scholar 

  • Marin-Padilla M (1988). Early ontogenesis of the human cerebral cortex. In: Peters A, Jones EG (eds).Development and Maturation of the Cerebral Cortex. Planum: New York. pp 1–30.

    Google Scholar 

  • Marsh R, Maia TV, Peterson BS (2009). Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies.Am J Psychiatry166: 664–674.

    PubMed PubMed Central  Google Scholar 

  • Marsh R, Zhu H, Schultz RT, Quackenbush G, Royal J, Skudlarski Pet al (2006). A developmental fMRI study of self-regulatory control.Hum Brain Mapp27: 848–863.

    PubMed PubMed Central  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000). Synaptic plasticity and memory: an evaluation of the hypothesis.Annu Rev Neurosci23: 649–711.

    CAS PubMed  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki Het al (1980). Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity.J Neurochem34: 213–215.

    CAS PubMed  Google Scholar 

  • Matsuzawa J, Matsui M, Konishi T, Noguchi K, Gur RC, Bilker Wet al (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children.Cereb Cortex11: 335–342.

    CAS PubMed  Google Scholar 

  • Maurer D, Lewis TL, Brent HP, Levin AV (1999). Rapid improvement in the acuity of infants after visual input.Science286: 108–110.

    CAS PubMed  Google Scholar 

  • Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde Oet al (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man.Brain Res Bull54: 287–298.

    CAS PubMed  Google Scholar 

  • McCarthy G, Blamire AM, Puce A, Nobre AC, Bloch G, Hyder Fet al (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task.Proc Natl Acad Sci USA91: 8690–8694.

    CAS PubMed PubMed Central  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1989). Subplate neurons pioneer the first axon pathway from the cerebral cortex.Science245: 978–982.

    CAS PubMed  Google Scholar 

  • McGraw P, Liang L, Provenzale JM (2002). Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging.AJR Am J Roentgenol179: 1515–1522.

    PubMed  Google Scholar 

  • McManus MF, Nasrallah IM, Gopal PP, Baek WS, Golden JA (2004). Axon mediated interneuron migration.J Neuropathol Exp Neurol63: 932–941.

    PubMed  Google Scholar 

  • Meinecke DL, Rakic P (1992). Expression of GABA and GABAA receptors by neurons of the subplate zone in developing primate occipital cortex: evidence for transient local circuits.J Comp Neurol317: 91–101.

    CAS PubMed  Google Scholar 

  • Michel AE, Garey LJ (1984). The development of dendritic spines in the human visual cortex.Hum Neurobiol3: 223–227.

    CAS PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas Met al (2006). Small-world networks and disturbed functional connectivity in schizophrenia.Schizophr Res87: 60–66.

    PubMed  Google Scholar 

  • Millar WS, Watson JS (1979). The effect of delayed feedback on infant learning reexamined.Child Dev50: 747–751.

    CAS PubMed  Google Scholar 

  • Miller RH (2002). Regulation of oligodendrocyte development in the vertebrate CNS.Prog Neurobiol67: 451–467.

    CAS PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001). Asymmetric inheritance of radial glial fibers by cortical neurons.Neuron31: 727–741.

    CAS PubMed  Google Scholar 

  • Molliver ME, Kostović I, van der Loos H (1973). The development of synapses in cerebral cortex of the human fetus.Brain Res50: 403–407.

    CAS PubMed  Google Scholar 

  • Monk CS, Webb SJ, Nelson CA (2001). Prenatal neurobiological development: molecular mechanisms and anatomical change.Dev Neuropsychol19: 211–236.

    CAS PubMed  Google Scholar 

  • Morishita H, Hensch T (2008). Critical period revisited: impact on vision.Curr Opin Neurobiol18: 101–107.

    CAS PubMed  Google Scholar 

  • Morris RG (2006). Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas.Eur J Neurosci23: 2829–2846.

    CAS PubMed  Google Scholar 

  • Mountcastle VB (1997). The columnar organization of the neocortex.Brain120: 701–722.

    PubMed  Google Scholar 

  • Mountcastle VB, Davies PW, Berman AL (1957). Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli.J Neurophysiol20: 374–407.

    CAS PubMed  Google Scholar 

  • Mrzljak L, Uylings HB, Kostovic I, Van Eden CG (1988). Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study.J Comp Neurol271: 355–386.

    CAS PubMed  Google Scholar 

  • Mrzljak L, Uylings HB, Kostovic I, van Eden CG (1992). Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study.J Comp Neurol316: 485–496.

    CAS PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, van Eden CG, Judas M (1990). Neuronal development in human prefrontal cortex in prenatal and postnatal stages. In: Uylings HBM, van Eden CG, de Bruin JPC, Corne MA, Feenstra MGP (eds).The Prefrontal Cortex: Its Structure, Function and Pathology. Elsevier: Amsterdam. pp 185–222.

    Google Scholar 

  • Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CRet al (2001). Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging.Radiology221: 349–358.

    CAS PubMed  Google Scholar 

  • Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW (2001). Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors.Dev Neurosci23: 203–208.

    CAS PubMed  Google Scholar 

  • Nieuwenhuys R (1994). The neocortex.Anat Embryol190: 307–337.

    CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001). Neurons derived from radial glial cells establish radial units in neocortex.Nature409: 714–720.

    CAS PubMed  Google Scholar 

  • Novak GP, Kurtzberg D, Kreuzer JA, Vaughan Jr HG (1989). Cortical responses to speech sounds and their formants in normal infants: maturational sequence and spatiotemporal analysis.Electroencephalogr Clin Neurophysiol73: 295–305.

    CAS PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1986). Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system.J Comp Neurol245: 553–565.

    CAS PubMed  Google Scholar 

  • O’doherty J (2004). Reward representations and reward-related learning in the human brain: insights from neuroimaging.Curr Opin Neurobiol14: 769–776.

    PubMed  Google Scholar 

  • O’Donnell S, Noseworthy MD, Levine B, Dennis M (2005). Cortical thickness of the frontopolar area in typically developing children and adolescents.Neuroimage24: 948–954.

    PubMed  Google Scholar 

  • O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992). Diverse migratory pathways in the developing cerebral cortex.Science258: 299–302.

    PubMed  Google Scholar 

  • Olesen PJ, Macoveanu J, Tegner J, Klingberg T (2007). Brain activity related to working memory and distraction in children and adults.Cereb Cortex17: 1047–1054.

    PubMed  Google Scholar 

  • Olesen PJ, Nagy Z, Westerberg H, Klingberg T (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network.Brain Res Cogn Brain Res18: 48–57.

    PubMed  Google Scholar 

  • Olson EC, Walsh CA (2002). Smooth, rough and upside-down neocortical development.Curr Opin Genet Dev12: 320–327.

    CAS PubMed  Google Scholar 

  • Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW (1990). Planning and spatial working memory following frontal lobe lesions in man.Neuropsychologia28: 1021–1034.

    CAS PubMed  Google Scholar 

  • Partridge SC, Mukherjee P, Berman JI, Henry RG, Miller SP, Lu Yet al (2005). Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns.J Magn Reson Imaging22: 467–474.

    PubMed  Google Scholar 

  • Paus T (2005). Mapping brain maturation and cognitive development during adolescence.Trends Cogn Sci9: 60–68.

    PubMed  Google Scholar 

  • Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies.Brain Res Bull54: 255–266.

    CAS PubMed  Google Scholar 

  • Paus T, Keshavan M, Giedd J (2008). Why do many psychiatric disorders emerge during adolescence?Nat Rev Neurosci9: 947–957.

    CAS PubMed PubMed Central  Google Scholar 

  • Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain.Exp Neurol172: 1–16.

    CAS PubMed  Google Scholar 

  • Peterson B, Anderson AW, Ehrenkranz R, Staib LH, Tageldin M, Colson Eet al (2003). Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants.Pediatrics111: 939–948.

    PubMed  Google Scholar 

  • Peterson BS, Kane MJ, Alexander GE, Lacadie C (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks.Cogn Brain Res13: 427–440.

    Google Scholar 

  • Peterson BS, Pine DS, Cohen P, Brook JS (2001). Prospective, longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample.J Am Acad Child Adolesc Psychiatry40: 685–695.

    CAS PubMed  Google Scholar 

  • Peterson BS, Skudlarski P, Gatenby JC, Zhang H (1999). An fMRI Study of Stroop Word-Color interference: evidence for cingulate subregions subserving multiple distributed attentional systems.Biol Psychiatry45: 1237–1258.

    CAS PubMed  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks.Proc Natl Acad Sci USA90: 878–882.

    CAS PubMed PubMed Central  Google Scholar 

  • Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood.Arch Neurol51: 874–887.

    CAS PubMed  Google Scholar 

  • Piaget J (1954).The Construction of Reality in the Child. Basic: New York.

    Google Scholar 

  • Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P (1995). An MRI study of brain size in autism.Am J Psychiatry152: 1145–1149.

    CAS PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990). The attention system of the human brain.Annu Rev Neurosci13: 25–42.

    CAS PubMed  Google Scholar 

  • Prechtl HF, Hopkins B (1986). Developmental transformations of spontaneous movements in early infancy.Early Hum Dev14: 233–238.

    CAS PubMed  Google Scholar 

  • Raedler E, Raedler A (1978). Autoradiographic study of early neurogenesis in rat neocortex.Anat Embryol154: 267–284.

    CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001). A default mode of brain function.Proc Natl Acad Sci USA98: 676–682.

    CAS PubMed PubMed Central  Google Scholar 

  • Rakic P (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex.J Comp Neurol145: 61–83.

    CAS PubMed  Google Scholar 

  • Rakic P (1978). Neuronal migration and contact guidance in the primate telencephalon.Postgrad Med J54 (Suppl 1): 25–40.

    PubMed  Google Scholar 

  • Rakic P (1982). Early developmental events: cell lineages, acquisition of neuronal positions, and areal and laminar development.Neurosci Res Program Bull20: 439–451.

    CAS PubMed  Google Scholar 

  • Rakic P (1988). Specification of cerebral cortical areas.Science241: 170–176.

    CAS PubMed  Google Scholar 

  • Rakic P (1995). Radialvs tangential migration of neuronal clones in the developing cerebral cortex.Proc Natl Acad Sci USA92: 11323–11327.

    CAS PubMed PubMed Central  Google Scholar 

  • Rakic P (2003). Developmental and evolutionary adaptations of cortical radial glia.Cereb Cortex13: 541–549.

    PubMed  Google Scholar 

  • Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex.Science232: 232–235.

    CAS PubMed  Google Scholar 

  • Rakic P, Bourgeois JP, Goldman-Rakic PS (1994a). Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness.Prog Brain Res102: 227–243.

    CAS PubMed  Google Scholar 

  • Rakic P, Cameron RS, Komuro H (1994b). Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration.Curr Opin Neurobiol4: 63–69.

    CAS PubMed  Google Scholar 

  • Rakic S, Zecevic N (2000). Programmed cell death in the developing human telencephalon.Eur J Neurosci12: 2721–2734.

    CAS PubMed  Google Scholar 

  • Ramanathan R, Wilkemeyer MF, Mittal B, Perides G, Charness ME (1996). Alcohol inhibits cell-cell adhesion mediated by human L1.J Cell Biol133: 381–390.

    CAS PubMed  Google Scholar 

  • Rapoport J, Gogtay N (2008). Brain neuroplasticity in healthy, hyperactive and psychotic children: insights from neuroimaging.Neuropsychopharmacology33: 181–197.

    PubMed  Google Scholar 

  • Rash BG, Grove EA (2006a). Area and layer patterning in the developing cerebral cortex.Curr Opin Neurobiol16: 25–34.

    CAS PubMed  Google Scholar 

  • Rash BG, Grove EA (2006b). Area and layer patterning in the developing cerebral cortex.Curr Opin Neurobiol16: 25–34.

    CAS PubMed  Google Scholar 

  • Rhinn M, Picker A, Brand M (2006). Global and local mechanisms of forebrain and midbrain patterning.Curr Opin Neurobiol16: 5–12.

    CAS PubMed  Google Scholar 

  • Rickmann M, Chronwall BM, Wolff JR (1977). On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage.Anat Embryol151: 258–307.

    Google Scholar 

  • Rickmann M, Wolff JR (1981). Differentiation of ‘preplate’ neurons in the pallium of the rat.Bibliotheca Anat19: 142–146.

    Google Scholar 

  • Rosenthal A, Jouet M, Kenwrick S (1992). Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus.Nat Genet2: 107–112.

    CAS PubMed  Google Scholar 

  • Rothbart MK, Posner MI, Boylan A (1990). Regulatory mechanisms in infant development. In: Enns JT (ed).The Development of Attention: Research and Theory. Elsevier/North-Holland: Amstardam. pp 47–66.

    Google Scholar 

  • Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons Aet al (2000). Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI.Neurosci Biobehav Rev24: 13–19.

    CAS PubMed  Google Scholar 

  • Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I, Taylor Eet al (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control.Hum Brain Mapp27: 973–993.

    PubMed PubMed Central  Google Scholar 

  • Scherf KS, Sweeney JA, Luna B (2006). Brain basis of developmental change in visuospatial working memory.J Cogn Neurosci18: 1045–1058.

    PubMed  Google Scholar 

  • Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK (2002). Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study.Radiology222: 212–218.

    PubMed  Google Scholar 

  • Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study.Hum Brain Mapp26: 139–147.

    PubMed PubMed Central  Google Scholar 

  • Schwartz ML, Rakic P, Goldman-Rakic PS (1991). Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.Proc Natl Acad Sci USA88: 1354–1358.

    CAS PubMed PubMed Central  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1999). The reduced neuropil hypothesis: a circuit based model of schizophrenia.Biol Psychiatry45: 17–25.

    CAS PubMed  Google Scholar 

  • Shankle WR, Rafii MS, Landing BH, Fallon JH (1999). Approximate doubling of numbers of neurons in postnatal human cerebral cortex and in 35 specific cytoarchitectural areas from birth to 72 months.Pediatr Dev Pathol2: 244–259.

    CAS PubMed  Google Scholar 

  • Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein Det al (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation.Proc Natl Acad Sci USA104: 19649–19654.

    CAS PubMed PubMed Central  Google Scholar 

  • Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay Net al (2006). Intellectual ability and cortical development in children and adolescents.Nature440: 676–679.

    CAS PubMed  Google Scholar 

  • Shaw P, Kabani NJ, Lerch J, Eckstrand K, Lenroot R, Gogtay Net al (2008). Neurodevelopmental trajectories of the human cerebral cortex.J Neurosci28: 3586–3594.

    CAS PubMed PubMed Central  Google Scholar 

  • Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C (2005). Diffusion tensor imaging of neurodevelopment in children and young adults.Neuroimage26: 1164–1173.

    PubMed  Google Scholar 

  • Sonderegger P, Rathjen FG (1992). Regulation of axonal growth in the vertebrate nervous system by interactions between glycoproteins belonging to two subgroups of the immunoglobulin superfamily.J Cell Biol119: 1387–1394.

    CAS PubMed  Google Scholar 

  • Sonuga-Barke E (2005). Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways.Biol Psychiatry57: 1231–1238.

    PubMed  Google Scholar 

  • Sowell E, Peterson B, Kan E, Woods RP, Yoshii J, Bansal Ret al (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age.Cereb Cortex17: 1550–1560.

    PubMed  Google Scholar 

  • Sowell ER, Delis D, Stiles J, Jernigan TL (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study.J Int Neuropsychol Soc7: 312–322.

    CAS PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003a). Mapping cortical change across the human life span.Nat Neurosci6: 309–315.

    CAS PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Batth R, Jernigan TL, Toga AW (1999). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping.Neuroimage9: 587–597.

    CAS PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004). Longitudinal mapping of cortical thickness and brain growth in normal children.J Neurosci24: 8223–8231.

    CAS PubMed PubMed Central  Google Scholar 

  • Sowell ER, Thompson PM, Welcome SE, Henkenius AL, Toga AW, Peterson BS (2003b). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder.Lancet362: 1699–1707.

    PubMed  Google Scholar 

  • Spear LP (2000). The adolescent brain and age-related behavioral manifestations.Neurosci Biobehav Rev24: 417–463.

    CAS PubMed  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004). The medial temporal lobe.Annu Rev Neurosci27: 279–306.

    CAS PubMed  Google Scholar 

  • Steinberg L (2007). Risk taking in adolescence new perspectives from brain and behavioral science.Curr Dir Psychol Sci16: 55–59.

    Google Scholar 

  • Stern CD (2001). Initial patterning of the central nervous system: how many organizers?Nat Rev Neurosci2: 92–98.

    CAS PubMed  Google Scholar 

  • Stewart GR, Pearlman AL (1987). Fibronectin-like immunoreactivity in the developing cerebral cortex.J Neurosci7: 3325–3333.

    CAS PubMed PubMed Central  Google Scholar 

  • Supèr H, Soriano E, Uylings HB (1998). The functions of the preplate in development and evolution of the neocortex and hippocampus.Brain Res Brain Res Rev27: 40–64.

    PubMed  Google Scholar 

  • Swanson HL (1999). What develops in working memory? A life span perspective.Dev Psychol35: 986–1000.

    CAS PubMed  Google Scholar 

  • Takahashi T, Svoboda K, Malinow R (2003). Experience strengthening transmission by driving AMPA receptors into synapses.Science299: 1585–1588.

    CAS PubMed  Google Scholar 

  • Tamm L, Menon V, Reiss AL (2002). Maturation of brain function associated with response inhibition.J Am Acad Child Adolesc Psychiatry41: 1231–1238.

    PubMed  Google Scholar 

  • Tang N, He M, O’Riordan MA, Farkas C, Buck K, Lemmon Vet al (2006). Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases.J Neurochem96: 1480–1490.

    CAS PubMed PubMed Central  Google Scholar 

  • Tarabulsy GM, Pascuzzo K, Moss E, St-Laurent D, Bernier A, Cyr Cet al (2008). Attachment-based intervention for maltreating families.Am J Orthopsychiatry78: 322–332.

    PubMed  Google Scholar 

  • Thelen K, Kedar V, Panicker AK, Schmid R-S, Midkiff BR, Maness PF (2002). The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins.J Neurosci22: 4918–4931.

    CAS PubMed PubMed Central  Google Scholar 

  • Thomas KM, King SW, Franzen PL, Welsh TF, Berkowitz AL, Noll DCet al (1999). A developmental functional MRI study of spatial working memory.Neuroimage10: 327–338.

    CAS PubMed  Google Scholar 

  • Thompson PM, Sowell ER, Gogtay N, Giedd JN, Vidal CN, Hayashi KMet al (2005). Structural MRI and brain development.Int Rev Neurobiol67: 285–323.

    PubMed  Google Scholar 

  • Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson Ret al (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia.Proc Natl Acad Sci USA98: 11650–11655.

    CAS PubMed PubMed Central  Google Scholar 

  • Thomson AM, Bannister AP (2003). Interlaminar connections in the neocortex.Cereb Cortex13: 5–14.

    PubMed  Google Scholar 

  • Toft PB, Leth H, Lou HC, Pryds O, Henriksen O (1994). Metabolite concentrations in the developing brain estimated with proton MR spectroscopy.J Magn Reson Imaging4: 674–680.

    CAS PubMed  Google Scholar 

  • Tsujimoto S, Yamamoto T, Kawaguchi H, Koizumi H, Sawaguchi T (2004). Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study.Cereb Cortex14: 703–712.

    PubMed  Google Scholar 

  • Uddin LQ, Iacoboni M, Lange C, Keenan JP (2007). The self and social cognition: the role of cortical midline structures and mirror neurons.Trends Cogn Sci11: 153–157.

    PubMed  Google Scholar 

  • Uher R, Mcguffin P (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis.Mol Psychiatry13: 131–146.

    CAS PubMed  Google Scholar 

  • Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJet al (2002). Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures.Ann Neurol52: 285–296.

    CAS PubMed  Google Scholar 

  • van der Knaap MS, van der Grond J, van Rijen PC, Faber JA, Valk J, Willemse K (1990). Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain.Radiology176: 509–515.

    CAS PubMed  Google Scholar 

  • Van Eden CG, Mrzljak L, Voorn P, Uylings HB (1989). Prenatal development of GABA-ergic neurons in the neocortex of the rat.J Comp Neurol289: 213–227.

    CAS PubMed  Google Scholar 

  • Vaughan Jr HG, Kurtzberg D (1989). Electrophysiological indices of normal and aberrant cortical maturation. In: Kellaway P, Noebels JL (eds).Developmental Neurophysiology. Johns Hopkins University Press: Baltimore, MD. pp 263–287.

    Google Scholar 

  • Wager TD, Smith EE (2003). Neuroimaging studies of working memory: a meta-analysis.Cogn Affect Behav Neurosci3: 255–274.

    PubMed  Google Scholar 

  • Weickert CS, Webster MJ, Colvin SM, Herman MM, Hyde TM, Weinberger DRet al (2000). Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone.J Comp Neurol423: 359–372.

    CAS PubMed  Google Scholar 

  • Welsh JA, Viana AG, Petrill SA, Mathias MD (2007). Interventions for internationally adopted children and families: a review of the literature.Child Adolesc Social Work J24: 285–311.

    Google Scholar 

  • Wood JG, Martin S, Price DJ (1992). Evidence that the earliest generated cells of the murine cerebral cortex form a transient population in the subplate and marginal zone.Dev Brain Res66: 137–141.

    CAS  Google Scholar 

  • Yakovlev PI, Lecours A (1967). The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed).Regional Development of the Brain in Early Life. Blackwell Scientific Publications: Boston. pp 3–70.

    Google Scholar 

  • Yu YC, Bultje RS, Wang X, Shi SH (2009). Specific synapses develop preferentially among sister excitatory neurons in the neocortex.Nature548: 501–504.

    Google Scholar 

  • Zecevic N (1998). Synaptogenesis in layer I of the human cerebral cortex in the first half of gestation.Cereb Cortex8: 245–252.

    CAS PubMed  Google Scholar 

  • Zecevic N, Bourgeois JP, Rakic P (1989). Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life.Brain Res Dev Brain Res50: 11–32.

    CAS PubMed  Google Scholar 

  • Zhai G, Lin W, Wilber KP, Gerig G, Gilmore JH (2003). Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit.Radiology229: 673–681.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by NIMH grants MH-K0274677 and T32 MH16434-27.

Author information

Authors and Affiliations

  1. Division of Child and Adolescent Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, USA

    Gregory Z Tau & Bradley S Peterson

Authors
  1. Gregory Z Tau
  2. Bradley S Peterson

Corresponding author

Correspondence toGregory Z Tau.

Additional information

DISCLOSURE

The authors declare no conflict of interest.

Rights and permissions

About this article

This article is cited by

Associated content

Series

2010Neuropsychopharmacology Reviews: Neurocircuitry: A Window into the Network Underlying Neuropsychiatric Disease

Advertisement

Search

Advanced search

Quick links


[8]ページ先頭

©2009-2026 Movatter.jp