Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Plants
  • Article
  • Published:

Resilience potential of the Ethiopian coffee sector under climate change

Nature Plantsvolume 3, Article number: 17081 (2017)Cite this article

Subjects

Abstract

Coffee farming provides livelihoods for around 15 million farmers in Ethiopia and generates a quarter of the country's export earnings. Against a backdrop of rapidly increasing temperatures and decreasing rainfall, there is an urgent need to understand the influence of climate change on coffee production. Using a modelling approach in combination with remote sensing, supported by rigorous ground-truthing, we project changes in suitability for coffee farming under various climate change scenarios, specifically by assessing the exposure of coffee farming to future climatic shifts. We show that 39–59% of the current growing area could experience climatic changes that are large enough to render them unsuitable for coffee farming, in the absence of significant interventions or major influencing factors. Conversely, relocation of coffee areas, in combination with forest conservation or re-establishment, could see at least a fourfold (>400%) increase in suitable coffee farming area. We identify key coffee-growing areas that are susceptible to climate change, as well as those that are climatically resilient.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main coffee growing zones and areas of Ethiopia.
Figure 2: Future projections for coffee suitability under Full Migration (A) and emission scenario A1B.
Figure 3: Future projections for coffee suitability under the No Migration scenario (D) and emission scenario A1B.
Figure 4: Future projections for coffee suitability under the scenarios of Full Migration (A) and No Migration (D) across emission scenarios A1B and A2.
Figure 5: Availability of suitable coffee niche in km2 for migration scenarios of Full Migration (A) and No Migration (D).
Figure 6: Histogram and profile for elevation shifts.
Figure 7: Projections for coffee suitability 2070–2099 (emission scenario A1B) for scenarios Full Migration (A) and No Migration (D), with main coffee areas (black lines; seeFig. 1) and protected area boundaries53 (red lines).

Similar content being viewed by others

References

  1. Minten, B., Tamru, S., Kuma, T. & Nyarko, Y.Structure and Performance of Ethiopia's Coffee Export Sector. Working paper 66 (EDRI/IFPRI, 2014).

  2. Historical Data on the Global Coffee Trade (ICO, 2016);http://www.ico.org/new_historical.asp (2016).

  3. Chemonics International.Ethiopia Coffee Industry Value Chain Analysis. Profiling the Actors, their Interactions, Costs, Constraints and Opportunities (USAID, 2010);http://agoa.info/toolkit/downloads/5157.html

  4. Tefera, A.Ethiopia: Coffee Annual Report. GAIN Report Number ET1514 (USDA Foreign Agricultural Service, 2015).

  5. Hailu, B., Maeda, E. E., Heiskanen, J. & Pellikka, P. Reconstructing pre-agricultural expansion vegetation cover of Ethiopia.Appl. Geogr.62, 357–365 (2015).

    Article  Google Scholar 

  6. Friis, I., Demissew, S. & Breugel, P. V. Atlas of the potential vegetation of Ethiopia.Biol. Skrif.58, 1–307 (2010).

    Google Scholar 

  7. Dudu, V. P.Impacts of Climate Change on Coffee Farming in Ethiopia (LAP Lambert Academic, 2012).

    Google Scholar 

  8. Craparo, A. C. W., Van Asten, P. J. A., Läderach, A., Jassogneb, L. T. P. & Graba, S. W.Coffea arabica yields decline in Tanzania due to climate change: global implications.Agr. Forest Meteorol.207, 1–10 (2015).

    Article  Google Scholar 

  9. McSweeney, C., New, M. & Lizcano, G.UNDP Climate Change Country Profiles: Ethiopia (UNDP, 2010);http://www.geog.ox.ac.uk/research/climate/projects/undp-cp/UNDP_reports/Ethiopia/Ethiopia.hires.report.pdf

    Book  Google Scholar 

  10. Jury, M. R. & Funk, C. Climatic trends over Ethiopia: regional signals and drivers.Int. J. Climatol.33, 1924–1935 (2013).

    Article  Google Scholar 

  11. Siraj, A. S.et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia.Science243, 1154–1158 (2014).

    Article  Google Scholar 

  12. Mekasha, A., Tesfaye, K. & Duncan, J. Trends in daily observed temperature and precipitation over three Ethiopian eco-environments.Int. J. Climatol.34, 1990–1999 (2014).

    Article  Google Scholar 

  13. Williams, A. P. & Funk, C. A westward extension of the warm pool leads to a westward extension of the walker circulation, drying Eastern Africa.Clim. Dynam.37, 2417–2435 (2011).

    Article  Google Scholar 

  14. Rowell, D. P., Booth, B. B. B., Nicholson, S. E. & Good, P. Reconciling past and future rainfall trends over east Africa.J. Climate28, 9768–9788 (2015).

    Article  Google Scholar 

  15. Seleshi, Y. & Camberlin, P. Recent changes in dry spell and extreme rainfall events in Ethiopia.Theor. Appl. Climatol.83, 181–191 (2006).

    Article  Google Scholar 

  16. Viste, E., Korecha, D. & Sorteberg, A. Recent drought and precipitation tendencies in Ethiopia.Theor. Appl. Climatol.112, 535–551 (2013).

    Article  Google Scholar 

  17. Funk, C.et al.A Climate Trend Analysis of Ethiopia, USGS Fact Sheet 2012–3053 (USGS, 2012).

    Google Scholar 

  18. Funk, C.et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development.Proc. Natl Acad. Sci. USA105, 11081–11086 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Funk, C.et al.Recent Drought Tendencies in Ethiopia and Equatorial Subtropical Eastern Africa (FEWS NET, 2005).

    Google Scholar 

  20. Williams, A. P.et al. Recent summer precipitation trends in the greater horn of Africa and the emerging role of Indian ocean sea surface temperature.Clim. Dynam.39, 2307–2328 (2012).

    Article  Google Scholar 

  21. Conway, D. & Schipper, E. L. F. Adaptation to climate change in Africa: challenges and opportunities identified from Ethiopia. Glob. Environ. Chang.21, 227–237 (2011).

    Article  Google Scholar 

  22. IPCCSummary for Policymakers (eds Stocker, T. F.et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  23. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Barros, V. R.et al.) (Cambridge Univ. Press, 2014).

    Book  Google Scholar 

  24. Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research.Environ. Res. Lett.8, 24018 (2013).

    Article  Google Scholar 

  25. Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on natural populations of Arabica coffee: predicting future trends and identifying priorities.PLoS ONE7, e47981 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Landsat Missions: Landsat 8 (USGS, accessed February 2014);http://landsat.usgs.gov/landsat8.php

  27. Schroth, G .et al. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico.Mitig. Adapt. Strateg. Glob. Change14, 605–625 (2009).

    Article  Google Scholar 

  28. Baca, M ., Laderach, P ., Haggar, J ., Schroth, G. & Ovalle, O. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.PLoS ONE9, e88463 (2014).

    Article PubMed PubMed Central  Google Scholar 

  29. Magrach, A. & Ghazoul, J. Climate and pest-driven geographic shifts in global coffee production: implications for forest cover, biodiversity and carbon storage.PLoS ONE10, e0133071 (2015).

    Article PubMed PubMed Central  Google Scholar 

  30. Bunn, C., Läderach, P., Pérez Jimenez, J. G., Montagnon, C. & Schilling, T. Multiclass classification of agro-ecological zones for Arabica coffee: an improved understanding of the impacts of climate change.PLoS ONE10, e0140490 (2015).

    Article PubMed PubMed Central  Google Scholar 

  31. Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M. & Schroth, G. Projected shifts in coffea arabica suitability among major global producing regions due to climate change.PLoS ONE10, e0124155 (2015).

    Article PubMed PubMed Central  Google Scholar 

  32. Bunn, C. P. L., Ovalle-Rivera, O . & Kirschke, D. A bitter cup: climate change profile of global production of Arabica and robusta coffe.Clim. Change129, 89–101 (2015).

    Article  Google Scholar 

  33. Chemura, A., Kutywayo, D., Chidoko, P. & Mahoya, C. Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe.Reg. Environ. Change16, 473–485 (2016).

    Article  Google Scholar 

  34. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas.Int. J. Climatol.25, 1965–1978 (2005).

    Article  Google Scholar 

  35. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate.Science332, 53–58 (2011).

    Article CAS PubMed  Google Scholar 

  36. Foden, W. & Young, B. E.IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change Version 1.0. Occasional Paper of the IUCN Species Survival Commission No. 59 (IUCN, 2016);https://portals.iucn.org/library/sites/library/files/documents/SSC-OP-059.pdf

  37. Meehl, G. A.et al. The WCRP CMIP3 multi-model dataset: a new era in climate change research.Bull. Amer. Meteor. Soc.88, 1383–1394 (2007).

    Article  Google Scholar 

  38. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design.Bull. Amer. Meteor. Soc.93, 485–498 (2012).

    Article  Google Scholar 

  39. Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections.Nat. Clim. Chang.3, 369–373 (2013).

    Article  Google Scholar 

  40. Tierney, J. E., Ummenhofer, C. C. & deMenocal, P. B. Past and future rainfall in the Horn of Africa.Sci. Adv.1, e1500682 (2015).

    Article PubMed PubMed Central  Google Scholar 

  41. Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties.Proc. Natl Acad. Sci. USA106, 19729–19736 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Boot, W. J.Ethiopian Coffee Buying Manual: Practical Guidelines for Purchasing and Importing Ethiopian Speciality Coffee Beans. (USAID, 2011);https://bootcoffee.com/wp-content/uploads/2013/01/Ethiopian_Coffee_Buying_Guide.pdf

  43. Rodrigues, W. P.et al. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropicalCoffea arabica andC. canephora species.Glob. Change Biol.22, 415–431 (2016).

    Article  Google Scholar 

  44. Cook, K. H. & Vizy, E. K. Impact of climate change on mid-twenty-first century growing seasons in Africa.Clim. Dynam.39, 2937–2955 (2012).

    Article  Google Scholar 

  45. Wrigley, G.Coffee – Tropical Agriculture Series (Longman Scientific & Technical, 1988).

    Google Scholar 

  46. Wellman, F. L.Coffee: Botany, Cultivation and Utilization (L. Hill; Interscience, 1961).

    Google Scholar 

  47. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 .New Phytol.165, 351–372 (2005).

    Article PubMed  Google Scholar 

  48. Ainsworth, E. A., Leakey, A., Ort, D. R. & Long, S. P. FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply.New Phytol.179, 5–9 (2008).

    Article CAS PubMed  Google Scholar 

  49. Manderscheid, R., Erbs, M. & Weigel, H.-J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth.Eur. J. Agron.52, 11–21 (2014).

    Article CAS  Google Scholar 

  50. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations.Science312, 1918–1921 (2006).

    Article CAS PubMed  Google Scholar 

  51. Jaramillo, J.et al. Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa.PLoS ONE6, e24528 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Hein, L. & Gatzweiler, F. The economic value of coffee (Coffea arabica) genetic resources.Ecol. Econ.60, 176–185 (2006).

    Article  Google Scholar 

  53. The World Database on Protected Areas (UNEP/WCMC, 2016);http://www.protectedplanet.net

  54. Matthew, M. W.et al. Status of atmospheric correction using a MODTRAN4-based algorithm.Proc. SPIE 4049,VI, 199–207 (2000).

    Article  Google Scholar 

  55. Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images.Remote Sens. Environ.159, 269–277 (2015).

    Article  Google Scholar 

  56. Kriegler, F. J., Malila, W. A., Nalepka, R. F. & Richardson, W. Preprocessing transformations and their effects on multispectral recognition.Proc. 6th Intl. Symp. on Remote Sensing of Environment Vol. II, 97–131 (1969).

  57. Kadmon, R., Farber, O. & Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models.Ecol. Appl.14, 401–413 (2004).

    Article  Google Scholar 

  58. Franklin, J.Mapping Species Distributions 1st edn (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  59. Jiménez-Valverde, A., Lobo, J. & Hortal, J. Not as good as they seem: the importance of concepts in species distribution modelling.Divers. Distrib.14, 885–890 (2008).

    Article  Google Scholar 

  60. Anthony, F. M.et al. Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers.Euphytica118, 53–65 (2001).

    Article CAS  Google Scholar 

  61. Aga, A., Bryngelsson, T., Bekele, E. & Salomon, B. Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis.Hereditas138, 36–46 (2003).

    Article PubMed  Google Scholar 

  62. Lashermes, P., Trouslot, P., Anthony, F., Combes, M. C. & Charrier, A. Genetic diversity for RAPD markers between cultivated and wild accessions ofCoffea arabica.Euphytica87, 59–64 (1996).

    Article CAS  Google Scholar 

  63. Montagnon, C. & Bouharmont, P. Multivariate analysis of phenotypic diversity ofCoffea arabica.Genet. Resour. Crop. Ev.43, 221–227 (1996).

    Article  Google Scholar 

  64. Burkhardt, J., Kufa, T., Beining, A., Goldbach, H. E. & Fetene, M. in21st International Conference on Coffee Science, 1032–1036 (2007).

  65. Thuiller, W., Georges, D. & Engler, R. Biomod2: Ensemble platform for species distribution modeling. R package v.3.1-64 (CRAN, 2014);http://CRAN.R-project.org/package=biomod2

  66. Phillips, S. J., Dudik, M. & Schapire, R. E. inProc. 21st International Conference on Machine Learning Vol. 69, 655–662 (ACM Press, 2004).

  67. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions.Ecol. Model.190, 231–259 (2006).

    Article  Google Scholar 

  68. Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation.Ecography31, 161–175 (2008).

    Article  Google Scholar 

  69. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. Biomod—a platform for ensemble forecasting of species distributions.Ecography32, 369–373 (2009).

    Article  Google Scholar 

  70. Araujo, M. B. & New, M. Ensemble forecasting of species distributions.Trends. Ecol. Evo.22, 42–47 (2007).

    Article  Google Scholar 

  71. Thuiller, W., Lafourcade, B. & Araujo, M. B.Presentation for BIOMOD (2010);http://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/inst/doc/Biomod_Presentation_Manual.pdf?revision=218&root=biomod&pathrev=218

  72. Pearson, R. G.Species distribution modelling for conservation educators and practitioners (American Museum of Natural History, 2008);http://ncep.amnh.org

    Google Scholar 

  73. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges in combining projections from multiple climate models.J. Climate23, 2739–2758 (2010).

    Article  Google Scholar 

  74. Jury, M. R. Statistical evaluation of CMIP5 climate change model simulations for the Ethiopian highlands.Int. J. Climatol.35, 37–44 (2014).

    Article  Google Scholar 

  75. Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change.Ecol. Appl.20, 554–565 (2010).

    Article PubMed  Google Scholar 

  76. Ramirez-Villegas, J. & Jarvis, A.Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1 (CIAT, 2010);http://ccafs-climate.org/downloads/docs/Downscaling-WP-01.pdf

  77. Busby, J. R. inNature conservation: cost effective biological surveys and data analysis (eds Margules, C. R. & Austin, M. P. ) 64–68 (CSIRO, 1991).

    Google Scholar 

  78. Statistical Downscaling (Delta Method) CMIP3 (CGIAR/CCAFS, accessed February 2017);http://ccafs-climate.org/statistical_downscaling_delta/

  79. Statistical Downscaling (Delta Method) CMIP5 (CGIAR/CCAFS, accessed February 2017);http://ccafs-climate.org/statistical_downscaling_delta_cmip5/

Download references

Acknowledgements

This study was conducted for the project Building a Climate Resilient Coffee Economy for Ethiopia, within the Strategic Climate Institutions Programme (SCIP) Fund, financed by the governments of the UK (DFID), Denmark and Norway. We are grateful to in-country project partners (Ethiopian Biodiversity Institute, National Meteorology Agency, Ministry of Environment and Forest, Ministry of Agriculture, Addis Ababa University and the Oromia Coffee Farmers' Cooperative Union (OCFCU)), fund managers KPMG (Ethiopia), Department for International Development (DFiD, Ethiopia) and the Ethiopian Commodity Exchange (ECX). We thank: those individuals that assisted with fieldwork, including D. Chomen (OCFCU), R. O'Sullivan (RBG, Kew) and E. Sage (Speciality Coffee Association of America); C. Schmitt (University of Freiburg) for the use of coffee plot study data; D. Georges (LECA, CNRS) for helping with issues in R and the Biomod2 package; A. Cooper (RBG Kew) for providing assistance with image processing in ENVI; and A. Moat, S. Bachman (RBG Kew), R. Fields and D. Boyd (University of Nottingham) for reviewing earlier versions of this contribution. We also acknowledge the Program for Climate Model Diagnosis and Intercomparison and the WCRP's Working Group on Coupled Modelling for their roles in making available the WCRP CMIP3 and CMIP5 multi-model dataset. Support of these datasets is provided by the Office of Science, US Department of Energy. We gratefully acknowledge coffee farmers and coffee farming communities across Ethiopia for their participation in the SCIP project, and especially for their hospitality and assistance during field work.

Author information

Authors and Affiliations

  1. Royal Botanic Gardens, Kew, Richmond, TW9 3AE, Surrey, UK

    Justin Moat, Jenny Williams, Susana Baena, Timothy Wilkinson, Sebsebe Demissew & Aaron P. Davis

  2. School of Geography, University of Nottingham, NG7 2RD, Nottingham, UK

    Justin Moat & Susana Baena

  3. Environment and Coffee Forest Forum (ECFF), PO Box 28513, Addis Ababa, Ethiopia

    Tadesse W. Gole & Zeleke K. Challa

  4. Department of Plant Biology and Biodiversity Management, The National Herbarium, College of Natural Sciences, Addis Ababa University, PO Box 3434, Addis Ababa, Ethiopia

    Sebsebe Demissew

Authors
  1. Justin Moat
  2. Jenny Williams
  3. Susana Baena
  4. Timothy Wilkinson
  5. Tadesse W. Gole
  6. Zeleke K. Challa
  7. Sebsebe Demissew
  8. Aaron P. Davis

Contributions

J.M. and A.P.D. conceived and led the study; A.P.D. and J.M. led the project; all authors collected data; J.M., A.P.D., J.W., S.B. and T.W. analysed and processed the data. J.M. and A.P.D. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence toJustin Moat orAaron P. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Notes, Supplementary Tables 1–4, Supplementary References. (PDF 2100 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moat, J., Williams, J., Baena, S.et al. Resilience potential of the Ethiopian coffee sector under climate change.Nature Plants3, 17081 (2017). https://doi.org/10.1038/nplants.2017.81

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Collection

Nature Plants – Celebrating our 3rd Anniversary

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp