- Review Article
- Published:
Principles and applications of compact laser–plasma accelerators
Nature Physicsvolume 4, pages447–453 (2008)Cite this article
7232Accesses
439Citations
13Altmetric
Abstract
Rapid progress in the development of high-intensity laser systems has extended our ability to study light–matter interactions far into the relativistic domain, in which electrons are driven to velocities close to the speed of light. As well as being of fundamental interest in their own right, these interactions enable the generation of high-energy particle beams that are short, bright and have good spatial quality. Along with steady improvements in the size, cost and repetition rate of high-intensity lasers, the unique characteristics of laser-driven particle beams are expected to be useful for a wide range of contexts, including proton therapy for the treatment of cancers, materials characterization, radiation-driven chemistry, border security through the detection of explosives, narcotics and other dangerous substances, and of course high-energy particle physics. Here, we review progress that has been made towards realizing such possibilities and the principles that underlie them.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others

Laser-driven high-energy proton beams from cascaded acceleration regimes

Stable laser-acceleration of high-flux proton beams with plasma collimation

Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams
References
Tajima, T. & Dawson, J. M. Laser electron accelerator.Phys. Rev. Lett.43, 267–270 (1979).
Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator.Nature445, 741–744 (2007).
Blue, B. E. et al. Plasma Wakefield acceleration of an intense positron beam.Phys. Rev. Lett.90, 214801 (2003).
Esarey, E. et al. Overview of plasma based accelerators concepts.IEEE Trans. Plasma Sci.24, 252–288 (1996).
Joshi, C. The development of laser- and beam-driven plasma accelerators as an experimental field.Phys. Plasmas14, 055501 (2007).
Mendonça, J. T. et al. Proton and neutron sources using terawatt lasers.Meas. Sci. Technol.12, 1801–1812 (2001).
Borghesi, M. et al. Fast ion generation by high intensity laser irradiation of solid targets and applications.Fusion Sci. Technol.49, 412–439 (2006).
Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime.Appl. Phys. B74, 355–361 (2002).
Mangles, S. et al. Mono-energetic beams of relativistic electrons from intense laser plasma interactions.Nature431, 535–538 (2004).
Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding.Nature431, 538–541 (2004).
Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams.Nature431, 541–544 (2004).
Leemans, W. P. et al. GeV electron beams from a centimetre scale accelerator.Nature Phys.2, 696–699 (2006).
Esarey, E. et al. Electron injection into plasma wake fields by colliding laser pulses.Phys. Rev. Lett.79, 2682–2685 (1997).
Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses.Nature444, 737–740 (2006).
Lifschitz, A. F. et al. Electron acceleration by colliding laser beams in plasmas. Preprint at <http://arxiv.org/abs/physics/0703020> (2007).
Pukhov, A. & Gordienko, S. Bubble regime of wake field acceleration: Similarity theory and optimal scalings.Phil. Trans. R. Soc. A364, 623–633 (2006).
Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime.PRSTAB10, 061301 (2007).
Malka, V. et al. Design of a compact GeV laser plasma accelerator.Nucl. Instrum. Methods Phys. Res. A561, 310–313 (2006).
Malka, V. et al. Staged concept of laser plasma acceleration toward multi-GeV electron beams.PRSTAB9, 0913101 (2006).
Wilks, S. C. et al. Absorption of ultra intense laser pulses.Phys. Rev. Lett.69, 1383–1386 (1992).
Krushelnick, K. et al. Multi MeV ion production from high intensity laser interactions with underdense plasmas.Phys. Rev. Lett.83, 737–780 (1999).
Mora, P. Plasma expansion into a vacuum.Phys. Rev. Lett.90, 185002 (2003).
Snavely, R. A. et al. Intense high energy proton beams from Petawatt-laser irradiation of solids.Phys. Rev. Lett.85, 2945–2948 (2000).
Clark, E. L. et al. Energetic heavy ion and proton generation from ultraintense laser plasma interactions with solids.Phys. Rev. Lett.85, 1654–1657 (2000).
Pukhov, A. Three dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser.Phys. Rev. Lett.86, 3562–3565 (2001).
Silva, L. O. et al. Proton shock acceleration in laser plasma interactions.Phys. Rev. Lett.92, 015002 (2004).
Fuchs, J. et al. Comparison of laser ion acceleration from the front and rear surfaces of thin foils.Phys. Rev. Lett.94, 045004 (2005).
Fritzler, S. et al. Proton beams generated with high intensity lasers: Application to medical isotope production.Appl. Phys. Lett.83, 3039–3042 (2003).
Hegelich, M. et al. MeV ion jets from short pulse laser interaction with thin foils.Phys. Rev. Lett.89, 085002 (2002).
Cowan, T. E. et al. Ultra low emittance, multi MeV proton beams from a laser virtual cathode plasma accelerator.Phys. Rev. Lett.92, 204801 (2004).
Neely, D. et al. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses.Appl. Phys. Lett.89, 021502 (2006).
Antici, P. et al. Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets.Phys. Plasmas14, 030701 (2007).
Ceccotti, T. et al. Proton acceleration with high-intensity, ultra-high-contrast laser pulses.Phys. Rev. Lett.99, 185002 (2007).
Schwoerer, H. et al. Laser–plasma acceleration of quasi-monoenergetic protons with microstructured targets.Nature439, 445–448 (2006).
Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams.Nature439, 441–444 (2006).
Toncian, T. et al. Ultrafast laser driven microlens to focus and energy select Mega-electron volt protons.Science312, 5772–5775 (2006).
Kostyukov, I. et al. X-ray generation in an ion channel.Phys. Plasmas10, 4818–4828 (2003).
Rousse, A. et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser–plasma interaction.Phys. Rev. Lett.93, 135005 (2004).
Ta Phuoc, K. et al. Imaging electron trajectories in a laser wakefield cavity using betatron X-ray radiation.Phys. Rev. Lett.97, 225002 (2006).
Rousse, A. et al. Scaling for betatron X-ray radiation.Eur. Phys. J. D45, 391–398 (2007).
Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90∘ Thomson scattering: A tool for probing the structural dynamics of material.Science274, 236–238 (1996).
Schwoerer, H. et al. Thomson backscattered X-rays from laser accelerated electrons.Phys. Rev. Lett.96, 014802 (2006).
Hartemann, F. V. et al. Compton scattering X-ray sources driven by laser wakefield acceleration.Phys. Rev. ST Accel Beams10, 011301 (2007).
Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser–plasma wakefield accelerator.Nature Phys.4, 130–133 (2008).
Gruener, F. et al. Design considerations for table top laser based VUV and X-ray free electron lasers.Appl. Phys. B86, 431–435 (2007).
Rousse, A. et al. Femtosecond X-ray crystallography.Rev. Mod. Phys.73, 17–31 (2001).
DesRosiers, C. et al. 150–250 MeV electron beams in radiation therapy.Phys. Med. Biol.45, 1781–1805 (2000).
Yeboah, C. et al. Optimization of intensity modulated very high energy 50–250 MeV electron therapy.Phys. Med. Biol.47, 1285–1301 (2002).
Yeboah, C. & Sandison, G. A. Optimized treatment planning for prostate cancer comparing IMPT, VHEET and 15 MV IMXT.Phys. Med. Biol.47, 2247–2261 (2002).
Glinec, Y. et al. Radiotherapy with quasimonoenergetic electron beam from laser–plasma interaction.Med. Phys.33, 155–162 (2006).
Dubrova, Y. E. et al. Transgenerational mutation by radiation.Nature405, 37–40 (2002).
Von Sonntag, C. (ed.)Free-Radical-Induced DNA Damage and its Repair (Springer, Heidelberg, 2006).
Wroe, J. et al. Nanodosimetric cluster distributions of therapeutic proton beams.IEEE Trans. Nucl. Sci.53, 532–538 (2006).
Malka, V. et al. Practicability of protontherapy using compact laser systems.Med. Phys.31, 1587–1592 (2004).
Fourkal, E. et al. Intensity modulated radiation therapy using laser-accelerated protons: A Monte Carlo dosimetric study.Phys. Med. Biol.48, 3977–4000 (2003).
Ledingham, K. W. D. et al. Applications for nuclear phenomena generated by ultra-intense lasers.Science300, 1107–1110 (2003).
Lefebvre, E. et al. Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions.J. Appl. Phys.100, 113308 (2006).
Brozek-Pluska, B. et al. Direct observation of elementary radical events: Low and high-energy radiation femtochemistry in solutions.Radiat. Phys. Chem.72, 149–157 (2005).
Gauduel, Y. et al. Femtosecond relativistic electron beam triggered early bioradical events.SPIE Femtosecond Laser Appl. Biol.5463, 86–96 (2004).
Gauduel, Y. et al. Real-time probing of radical events with sulfide molecules.SPIE Genetically Eng. Opt. Probes Biomed. Appl. IV6449, E1–E12 (2007).
Grosswendt, B. Nanodosimetry, from radiation physics to radiation biology.Radiat. Prot. Dosim.115, 1–9 (2005).
Patel, P. K. et al. Isochoric heating of solid density matter with an ultrafast proton beam.Phys. Rev. Lett.91, 125004 (2003).
Borghesi, M. et al. Electric field detection in laser plasma interaction experiments via imaging technique.Phys. Plasmas9, 2214 (2002).
Romagnani, L. et al. Dynamics of electric fields driving the laser acceleration of multi MeV protons.Phys. Rev. Lett.95, 195001 (2005).
Le Pape, S. et al. Novel diagnostic of low-Z shock compressed material.High Energ. Density Phys.2, 1–6 (2006).
Glinec, Y. et al. High resolution γ-ray radiography produced by a laser–plasma driven electron source.Phys. Rev. Lett.94, 025003 (2005).
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses.Opt. Commun.56, 219–221 (1985).
Katsouleas, T. Electrons hang ten on laser wake.Nature431, 515–516 (2004).
Gerstner, E. Extreme light.Nature446, 16–18 (2007).
Acknowledgements
The authors would like to acknowledge R. Ferrand, T. Fuchs, L. Silva, H. Videau and G. Mourou for fruitful discussions.
Author information
Authors and Affiliations
Laboratoire d’Optique Appliquée, École Nationale Supérieure des Techniques Avancées, École Polytechnique, CNRS, UMR 7639, 91761 Palaiseau, France
Victor Malka, Jérôme Faure, Yann A. Gauduel, Antoine Rousse & Kim Ta Phuoc
Département de Physique Théorique et Appliquée, CEA/DAM Ile-de-France, Bruyères-le-Châtel, 91297 Arpajon, France
Erik Lefebvre
- Victor Malka
You can also search for this author inPubMed Google Scholar
- Jérôme Faure
You can also search for this author inPubMed Google Scholar
- Yann A. Gauduel
You can also search for this author inPubMed Google Scholar
- Erik Lefebvre
You can also search for this author inPubMed Google Scholar
- Antoine Rousse
You can also search for this author inPubMed Google Scholar
- Kim Ta Phuoc
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toVictor Malka.
Rights and permissions
About this article
Cite this article
Malka, V., Faure, J., Gauduel, Y.et al. Principles and applications of compact laser–plasma accelerators.Nature Phys4, 447–453 (2008). https://doi.org/10.1038/nphys966
Received:
Accepted:
Issue Date:
This article is cited by
High gradient terahertz-driven ultrafast photogun
- Jianwei Ying
- Xie He
- Dongfang Zhang
Nature Photonics (2024)
Investigation of the propagation of coupled laser pulses in a plasma
- Mina Mohammadi
- Narges Sekhavat
- Masoud Rezvani Jalal
Journal of the Korean Physical Society (2024)
Influence of upper hybrid wave on electron acceleration by Laguerre–Gaussian pulse in relativistic-ponderomotive plasma
- Proxy Kad
- Arvinder Singh
Optical and Quantum Electronics (2024)
Spatio-temporal couplings for controlling group velocity in longitudinally pumped seeded soft X-ray lasers
- Adeline Kabacinski
- Eduardo Oliva
- Stéphane Sebban
Nature Photonics (2023)
Luminous, relativistic, directional electron bunches from an intense laser driven grating plasma
- Amit D. Lad
- Y. Mishima
- H. Habara
Scientific Reports (2022)