- Letter
- Published:
Quantum principal component analysis
Nature Physicsvolume 10, pages631–633 (2014)Cite this article
47kAccesses
1157Citations
80Altmetric
Subjects
Abstract
The usual way to reveal properties of an unknown quantum state, given many copies of a system in that state, is to perform measurements of different observables and to analyse the results statistically1,2. For non-sparse but low-rank quantum states, revealing eigenvectors and corresponding eigenvalues in classical form scales super-linearly with the system dimension3,4,5,6. Here we show that multiple copies of a quantum system with density matrixρ can be used to construct the unitary transformation e−iρt. As a result, one can perform quantum principal component analysis of an unknown low-rank density matrix, revealing in quantum form the eigenvectors corresponding to the large eigenvalues in time exponentially faster than any existing algorithm. We discuss applications to data analysis, process tomography and state discrimination.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nielsen, M. A. & Chuang, I. L.Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Mohseni, M., Rezakhani, A. T. & Lidar, D. A. Quantum-process tomography: Resource analysis of different strategies.Phys. Rev. A77, 032322 (2008).
Gross, D., Liu, Y-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomography via compressed sensing.Phys. Rev. Lett.105, 150401 (2010).
Liu, Y-K. Universal low-rank matrix recovery from Pauli measurements.Adv. Neural Inf. Proc. Sys. (NIPS)24, 1638–1646 (2011).
Flammia, S. T., Gross, D., Liu, Y-K. & Eisert, J. Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators.New J. Phys.14, 095022 (2012).
Liberty, E., Woolfe, F., Martinsson, P-G., Rokhlin, V. & Tygert, M. Randomized algorithms for the low-rank approximation of matrices.Proc. Natl Acad. Sci. USA104, 20167–20172 (2007).
Shabani, A. et al. Efficient measurement of quantum dynamics via compressive sensing.Phys. Rev. Lett.106, 100401 (2011).
Shabani, A., Mohseni, M., Lloyd, S., Kosut, R. L. & Rabitz, H. Estimation of many-body quantum hamiltonians via compressive sensing.Phys. Rev. A84, 012107 (2011).
Bishop, C. M.Pattern Recognition and Machine Learning (Springer, 2006).
Murphy, K. P.Machine Learning: A Probabilistic Perspective (MIT Press, 2012).
Lloyd, S. Universal quantum simulators.Science273, 1073–1078 (1996).
Aharonov, D. & Ta-Shma, A.Proc. 35th Annu. ACM Symp. on Theory of Computing 20–29 (ACM, 2003).
Berry, D. W., Ahokas, G., Cleve, R. & Sanders, B. C. Efficient quantum algorithms for simulating sparse hamiltonians.Commun. Math. Phys.270, 359–371 (2007).
Wiebe, N., Berry, D. W., Hoyer, P. & Sanders, B. C. Simulating quantum dynamics on a quantum computer.J. Phys. A43, 065203 (2010).
Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations.Phys. Rev. Lett.103, 150502 (2009).
Araújo, M., Feix, A., Costa, F. & Brukner, Č. Quantum circuits cannot control unknown operations. Preprint athttp://arxiv.org/abs/1309.7976 (2013).
Nakayama, S., Soeda, A. & Murao, M. Universal implementation of projective measurement of energy. Preprint athttp://arxiv.org/abs/1310.3047 (2013).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory.Phys. Rev. Lett.100, 160501 (2008).
Giovannetti, V., Lloyd, S. & Maccone, L. Architectures for a quantum random access memory.Phys. Rev. A78, 052310 (2008).
De Martini, F. et al. Experimental quantum private queries with linear optics.Phys. Rev. A80, 010302(R) (2009).
Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. Preprint athttp://arxiv.org/abs/1307.0411 (2013).
Choi, M-D. Completely positive linear maps on complex matrices.Lin. Alg. Appl.10, 285–290 (1975).
Bar-Yossef, Z.Proc. 35th Annu. ACM Symp. on Theory of Computing 335–344 (ACM, 2003).
Keyl, M. & Werner, R. F. Estimating the spectrum of a density operator.Phys. Rev. A64, 052311 (2001).
Bacon, D., Chuang, I. L. & Harrow, A. W. Efficient quantum circuits for Schur and Clebsch–Gordan transforms.Phys. Rev. Lett.97, 170502 (2006).
Keyl, M. Quantum state estimation and large deviations.Rev. Math. Phys.18, 19–60 (2006).
Helstrom, C. W.Quantum Detection and Estimation Theory (Academic, 1976).
Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Preprint athttp://arxiv.org/abs/1307.0471 (2013).
Acknowledgements
This work was supported by DARPA, Google-NASA Quantum Artificial Intelligence Laboratory, AFOSR under a MURI program, and J. Epstein. The authors thank A. Childs and R. Kothari for helpful discussions.
Author information
Authors and Affiliations
Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, USA
Seth Lloyd
Research Laboratory for Electronics, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, USA
Seth Lloyd & Patrick Rebentrost
Google Research, 90291 Venice, California, USA
Masoud Mohseni
- Seth Lloyd
Search author on:PubMed Google Scholar
- Masoud Mohseni
Search author on:PubMed Google Scholar
- Patrick Rebentrost
Search author on:PubMed Google Scholar
Contributions
S.L., M.M. and P.R. contributed to the theoretical research described in the paper and the writing of the manuscript.
Corresponding author
Correspondence toSeth Lloyd.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis.Nature Phys10, 631–633 (2014). https://doi.org/10.1038/nphys3029
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Towards provably efficient quantum algorithms for large-scale machine-learning models
- Junyu Liu
- Minzhao Liu
- Liang Jiang
Nature Communications (2024)
Quantum Algorithm for Classical Multidimensional Scaling
- XingAo Liu
- Ri-Gui Zhou
- Jia Luo
International Journal of Theoretical Physics (2024)
Shallow quantum neural networks (SQNNs) with application to crack identification
- Meghashrita Das
- Arundhuti Naskar
- Biswajit Basu
Applied Intelligence (2024)
Variational quantum multidimensional scaling algorithm
- Xinglan Zhang
- Feng Zhang
- Fei Chen
Quantum Information Processing (2024)
Denoising quantum mixed states using quantum autoencoders
- Ming-Ming Wang
Quantum Information Processing (2024)


