Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Physics
  • Review Article
  • Published:

Testing the limits of quantum mechanical superpositions

Nature Physicsvolume 10pages271–277 (2014)Cite this article

Subjects

Abstract

Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality — concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the past decades inspires hope that this debate may be settled by table-top experiments.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superposition experiments.
Figure 2: Accounting for environmental decoherence.
Figure 3: Interference schemes for large masses.

Similar content being viewed by others

References

  1. Dowling, J. P. & Milburn, G. J. Quantum technology: The second quantum revolution.Phil. Trans. A361, 1655–1674 (2003).

    ADS MathSciNet  Google Scholar 

  2. Zeilinger, A. Experiment and the foundations of quantum physics.Rev. Mod. Phys.71, S288–S297 (1999).

    Google Scholar 

  3. Trabesinger, A. Quantum simulation.Nature Phys.8, 263–263 (2012).

    ADS  Google Scholar 

  4. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation.Nature404, 247–255 (2000).

    ADS MATH  Google Scholar 

  5. Southwell, K. Quantum coherence.Nature453, 1003–1003 (2008).

    ADS  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology.Nature Phys.5, 222–229 (2011).

    ADS  Google Scholar 

  7. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology.Nature464, 1170–1173 (2010).

    ADS  Google Scholar 

  8. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit.Nature464, 1165–1169 (2010).

    ADS  Google Scholar 

  9. Haroche, S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary.Rev. Mod. Phys.85, 1083–1102 (2013).

    ADS  Google Scholar 

  10. Wineland, D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat.Rev. Mod. Phys.85, 1103–1114 (2013).

    ADS  Google Scholar 

  11. Joos, E. et al.Decoherence and the Appearance of a Classical World in Quantum Theory 2nd edition (Springer, 2003).

    Google Scholar 

  12. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical.Rev. Mod. Phys.75, 715–775 (2003).

    ADS MathSciNet MATH  Google Scholar 

  13. Laloë, F.Do We Really Understand Quantum Mechanics? (Cambridge Univ. Press, 2012).

    MATH  Google Scholar 

  14. Fickler, R. et al. Quantum entanglement of high angular momenta.Science338, 640–643 (2012).

    ADS  Google Scholar 

  15. Ma, X. S. et al. Quantum teleportation over 143 kilometres using active feed-forward.Nature489, 269–273 (2012).

    ADS  Google Scholar 

  16. Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect.Nature495, 205–209 (2013).

    ADS  Google Scholar 

  17. Monz, T. et al. 14-qubit entanglement: Creation.Phys. Rev. Lett.106, 130506 (2011).

    ADS  Google Scholar 

  18. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects.Nature413, 400–403 (2001).

    ADS  Google Scholar 

  19. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook.Science339, 1169–1174 (2013).

    ADS  Google Scholar 

  20. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits.Nature453, 1031–1042 (2008).

    ADS  Google Scholar 

  21. Friedman, J., Patel, V., Chen, W., Tolpygo, S. & Lukens, J. Quantum superposition of distinct macroscopic states.Nature406, 43–46 (2000).

    ADS  Google Scholar 

  22. Korsbakken, J., Wilhelm, F. & Whaley, K. The size of macroscopic superposition states in flux qubits.Europhys. Lett.89, 30003 (2010).

    ADS  Google Scholar 

  23. Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer.Phys. Rev. A47, 369–371 (1974).

    Google Scholar 

  24. Zawisky, M., Baron, M., Loidl, R. & Rauch, H. Testing the world’s largest monolithic perfect crystal neutron interferometer.Nucl. Instrum. Methods Phys. Res. A481, 406–413 (2002).

    ADS  Google Scholar 

  25. Nesvizhevsky, V. V. et al. Quantum states of neutrons in the earth’s gravitational field.Nature415, 298–300 (2002).

    ADS  Google Scholar 

  26. Jenke, T., Geltenbort, P., Lemmel, H. & Abele, H. Realization of a gravity–resonance–spectroscopy technique.Nature Phys.7, 468–472 (2011).

    ADS  Google Scholar 

  27. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: The near-resonant Kapitza–Dirac effect.Phys. Rev. Lett.56, 827–830 (1986).

    ADS  Google Scholar 

  28. Keith, D. W., Schattenburg, M. L., Smith, H. I. & Pritchard, D. E. Diffraction of atoms by a transmission grating.Phys. Rev. Lett.61, 1580–1583 (1988).

    ADS  Google Scholar 

  29. Bordé, C. Atomic interferometry with internal state labelling.Phys. Lett. A140, 10–12 (1989).

    ADS  Google Scholar 

  30. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions.Phys. Rev. Lett.67, 181–184 (1991).

    ADS  Google Scholar 

  31. Peters, A., Yeow-Chung, K. & Chu, S. Measurement of gravitational acceleration by dropping atoms.Nature400, 849–852 (1999).

    ADS  Google Scholar 

  32. Stockton, J. K., Takase, K. & Kasevich, M. A. Absolute geodetic rotation measurement using atom interferometry.Phys. Rev. Lett.107, 133001 (2011).

    ADS  Google Scholar 

  33. Hohensee, M., Chu, S., Peters, A. & Müller, H. Equivalence principle and gravitational redshift.Phys. Rev. Lett.106, 151102 (2011).

    ADS  Google Scholar 

  34. Müller, H., Chiow, S-w., Long, Q., Herrmann, S. & Chu, S. Atom interferometry with up to 24-photon-momentum-transfer beam splitters.Phys. Rev. Lett.100, 180405 (2008).

    ADS  Google Scholar 

  35. Chiow, S., Kovachy, T., Chien, H. & Kasevich, M. 102k large area atom interferometers.Phys. Rev. Lett.107, 130403 (2011).

    ADS  Google Scholar 

  36. Müntinga, H. et al. Interferometry with Bose–Einstein condensates in microgravity.Phys. Rev. Lett.110, 093602 (2013).

    ADS  Google Scholar 

  37. Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry.Phys. Rev. Lett.111, 083001 (2013).

    ADS  Google Scholar 

  38. Dimopoulos, S., Graham, P., Hogan, J. & Kasevich, M. Testing general relativity with atom interferometry.Phys. Rev. Lett.98, 1–4 (2007).

    Google Scholar 

  39. Bouyer, P. & Landragin, A.Interférométrie atomique et gravitation: du sol à l’espace. Journées de l’action spécifique GRAM (Gravitation, Références, Astronomie, Métrologie) (Nice, France, 2010).

  40. Nimmrichter, S. & Hornberger, K. Macroscopicity of mechanical quantum superposition states.Phys. Rev. Lett.110, 160403 (2013).

    ADS  Google Scholar 

  41. Percival, I. C. & Strunz, W. T. Detection of spacetime fluctuation by a model interferometer.Proc. R. Soc. Lond. A453, 431–446 (1997).

    ADS  Google Scholar 

  42. Sherson, J. et al. Quantum teleportation between light and matter.Nature443, 557–560 (2006).

    ADS  Google Scholar 

  43. Arndt, M. et al. Wave-particle duality of C60 molecules.Nature401, 680–682 (1999).

    ADS  Google Scholar 

  44. Gerlich, S. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules.Nature Phys.3, 711–715 (2007).

    ADS  Google Scholar 

  45. Haslinger, P. et al. A universal matter-wave interferometer with optical ionization gratings in the time domain.Nature Phys.9, 144–148 (2013).

    ADS  Google Scholar 

  46. Kiesel, N. et al. Cavity cooling of an optically levitated nanoparticle.Proc. Natl Acad. Sci. USA110, 14180–14185 (2013).

    ADS  Google Scholar 

  47. Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U. & Arndt, M. Cavity cooling of free silicon nanoparticles in high-vacuum.Nature Commun.4, 2743 (2013).

    ADS  Google Scholar 

  48. Clauser, J. inExperimental Metaphysics (eds Cohen, R. S., Horne, M. & Stachel, J.) 1–11 (Kluwer Academic, 1997).

    Google Scholar 

  49. Juffmann, T. et al. Wave and particle in molecular interference lithography.Phys. Rev. Lett.103, 263601 (2009).

    ADS  Google Scholar 

  50. Juffmann, T. et al. Real-time single-molecule imaging of quantum interference.Nature Nanotech.7, 297–300 (2012).

    ADS  Google Scholar 

  51. Reiger, E., Hackermüller, L., Berninger, M. & Arndt, M. Exploration of gold nanoparticle beams for matter wave interferometry.Opt. Commun.264, 326–332 (2006).

    ADS  Google Scholar 

  52. Nimmrichter, S., Hornberger, K., Haslinger, P. & Arndt, M. Testing spontaneous localization theories with matter-wave interferometry.Phys. Rev. A83, 043621 (2011).

    ADS  Google Scholar 

  53. Nimmrichter, S., Haslinger, P., Hornberger, K. & Arndt, M. Concept of an ionizing time-domain matter-wave interferometer.New J. Phys.13, 075002 (2011).

    ADS  Google Scholar 

  54. Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. & Tüxen, J. Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu.Phys. Chem. Chem. Phys.15, 14696–14700 (2013).

    Google Scholar 

  55. Berninger, M., Stéfanov, A., Deachapunya, S. & Arndt, M. Polarizability measurements in a molecule near-field interferometer.Phys. Rev. A76, 013607 (2007).

    ADS  Google Scholar 

  56. Gerlich, S. et al. Matter-wave metrology as a complementary tool for mass spectrometry.Angew. Chem-Int. Ed.47, 6195–6198 (2008).

    Google Scholar 

  57. Tüxen, J., Gerlich, S., Eibenberger, S., Arndt, M. & Mayor, M. De Broglie interference distinguishes between constitutional isomers.Chem. Commun.46, 4145–4147 (2010).

    Google Scholar 

  58. Niering, M. et al. Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock.Phys. Rev. Lett.84, 5496–5499 (2000).

    ADS  Google Scholar 

  59. Odom, B., Hanneke, D., D’Urso, B. & Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron.Phys. Rev. Lett.97, 030801 (2006).

    ADS  Google Scholar 

  60. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories.Phys. Rev. Lett.28, 938–941 (1972).

    ADS  Google Scholar 

  61. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time- varying analyzers.Phys. Rev. Lett.49, 1804–1807 (1982).

    ADS MathSciNet  Google Scholar 

  62. Giustina, M. et al. Bell violation with entangled photons, free of the fair-sampling assumption.Nature497, 227–230 (2013).

    ADS  Google Scholar 

  63. Abbott, B. et al. Observation of a kilogram-scale oscillator near its quantum ground state.New J. Phys.11, 073032 (2009).

    ADS  Google Scholar 

  64. Das, S. & Vagenas, E. C. Universality of quantum gravity corrections.Phys. Rev. Lett.101, 221301 (2008).

    ADS  Google Scholar 

  65. Bojowald, M. & Kempf, A. Generalized uncertainty principles and localization of a particle in discrete space.Phys. Rev. D86, 085017 (2012).

    ADS  Google Scholar 

  66. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. & Brukner, Č. Probing Planck-scale physics with quantum optics.Nature Phys.8, 393–397 (2012).

    ADS  Google Scholar 

  67. Marin, F. et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables.Nature Phys.9, 71–73 (2012).

    ADS  Google Scholar 

  68. Gambini, R., Porto, R. A. & Pullin, J. Realistic clocks, universal decoherence, and the black hole information paradox.Phys. Rev. Lett.93, 240401 (2004).

    ADS MathSciNet  Google Scholar 

  69. Milburn, G. J. Lorentz invariant intrinsic decoherence.New J. Phys.8, 96 (2006).

    ADS  Google Scholar 

  70. Wang, C. H-T., Bingham, R. & Mendonça, J. T. Quantum gravitational decoherence of matter waves.Class. Quantum Gravity23, L59–L65 (2006).

    MathSciNet MATH  Google Scholar 

  71. Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests.Rev. Mod. Phys.85, 471–527 (2013).

    ADS  Google Scholar 

  72. Yang, H., Miao, H., Lee, D-S., Helou, B. & Chen, Y. Macroscopic quantum mechanics in a classical spacetime.Phys. Rev. Lett.110, 170401 (2013).

    ADS  Google Scholar 

  73. Giulini, D. & Großardt, A. The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields.Class. Quantum Gravity29, 215010 (2012).

    ADS MATH  Google Scholar 

  74. Gisin, N. Stochastic quantum dynamics and relativity.Helv. Phys. Acta62, 363–371 (1989).

    MathSciNet  Google Scholar 

  75. Diósi, L. A universal master equation for the gravitational violation of quantum mechanics.Phys. Lett. A120, 377–381 (1987).

    ADS MathSciNet  Google Scholar 

  76. Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles.Phys. Rev. A42, 78–89 (1990).

    ADS MathSciNet  Google Scholar 

  77. Bassi, A. & Ghirardi, G. Dynamical reduction models.Phys. Rep.379, 257–426 (2003).

    ADS MathSciNet MATH  Google Scholar 

  78. Adler, S. L.Quantum Theory as an Emergent Phenomenon (Cambridge Univ. Press, 2004).

    Google Scholar 

  79. Leggett, A. J. Testing the limits of quantum mechanics: Motivation, state of play, prospects.J. Phys. Condens. Mater.14, R415–R451 (2002).

    ADS  Google Scholar 

  80. Feldmann, W. & Tumulka, R. Parameter diagrams of the GRW and CSL theories of wavefunction collapse.J. Phys. A45, 065304 (2012).

    ADS MathSciNet MATH  Google Scholar 

  81. Penrose, R. On gravity’s role in quantum state reduction.Gen. Relativ. Gravit.28, 581–600 (1996).

    ADS MathSciNet MATH  Google Scholar 

  82. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror.Phys. Rev. Lett.91, 130401 (2003).

    ADS MathSciNet  Google Scholar 

  83. Bose, S., Jacobs, K. & Knight, P. Scheme to probe the decoherence of a macroscopic object.Phys. Rev. A59, 3204–3210 (1999).

    ADS  Google Scholar 

  84. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state.Nature475, 359–363 (2011).

    ADS  Google Scholar 

  85. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state.Nature478, 89–92 (2011).

    ADS  Google Scholar 

  86. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint athttp://arxiv.org/abs/1303.0733 (2013).

  87. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator.Nature464, 697–703 (2010).

    ADS  Google Scholar 

  88. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere.Proc. Natl Acad. Sci. USA107, 1005–1010 (2010).

    ADS  Google Scholar 

  89. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms.New J. Phys.12, 033015 (2010).

    ADS  Google Scholar 

  90. Barker, P. F. & Shneider, M. N. Cavity cooling of an optically trapped nanoparticle.Phys. Rev. A81, 023826 (2010).

    ADS  Google Scholar 

  91. Romero-Isart, O. et al. Large quantum superpositions and interference of massive nanometer-sized objects.Phys. Rev. Lett.107, 020405 (2011).

    ADS  Google Scholar 

  92. Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S. & Arndt, M. Colloquium: Quantum interference of clusters and molecules.Rev. Mod. Phys.84, 157–173 (2012).

    ADS  Google Scholar 

  93. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum.Nature Phys.7, 527–530 (2011).

    ADS  Google Scholar 

  94. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle.Phys. Rev. Lett.109, 103603 (2012).

    ADS  Google Scholar 

  95. Dür, W., Simon, C. & Cirac, J. I. Effective size of certain macroscopic quantum superpositions.Phys. Rev. Lett.89, 210402 (2002).

    ADS  Google Scholar 

  96. Björk, G. & Mana, P. A size criterion for macroscopic superposition states.J. Opt. B6, 429–436 (2004).

    ADS  Google Scholar 

  97. Korsbakken, J. I., Whaley, K. B., Dubois, J. & Cirac, J. I. Measurement-based measure of the size of macroscopic quantum superpositions.Phys. Rev. A75, 042106 (2007).

    ADS  Google Scholar 

  98. Marquardt, F., Abel, B. & von Delft, J. Measuring the size of a quantum superposition of many-body states.Phys. Rev. A78, 012109 (2008).

    ADS  Google Scholar 

  99. Lee, C-W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space.Phys. Rev. Lett.106, 220401 (2011).

    ADS  Google Scholar 

  100. Fröwis, F. & Dür, W. Measures of macroscopicity for quantum spin systems.New J. Phys.14, 093039 (2012).

    ADS  Google Scholar 

  101. Kohstall, C. et al. Observation of interference between two molecular Bose–Einstein condensates.New J. Phys.13, 065027 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Nimmrichter for helpful discussions, and we acknowledge support by the European Commission within NANOQUESTFIT (No. 304886). M.A. is supported by the Austrian FWF (Wittgenstein Z149-N16) and by the ERC (AdvG 320694 Probiotiqus), K.H. by the DFG (HO 2318/4-1 and SFB/TR12). We thank the WE Heraeus Foundation for supporting the physics school ‘Exploring the Limits of the Quantum Superposition Principle’.

Author information

Authors and Affiliations

  1. Faculty of Physics, University of Vienna, QuNaBioS, VCQ, Boltzmanngasse 5 Vienna 1090, Austria,

    Markus Arndt

  2. Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1 Duisburg 47048, Germany,

    Klaus Hornberger

Authors
  1. Markus Arndt

    You can also search for this author inPubMed Google Scholar

  2. Klaus Hornberger

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toMarkus Arndt orKlaus Hornberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Arndt, M., Hornberger, K. Testing the limits of quantum mechanical superpositions.Nature Phys10, 271–277 (2014). https://doi.org/10.1038/nphys2863

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp