Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Physics
  • Article
  • Published:

How grain boundaries limit supercurrents in high-temperature superconductors

Nature Physicsvolume 6pages609–614 (2010)Cite this article

Abstract

The interface properties of high-temperature (high-Tc) copper oxide superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. Studies of single artificially fabricated grain boundaries have revealed that the critical currentJc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behaviour has been lacking. We present here the results of a microscopic evaluation based on a construction of fully three-dimensional YBa2Cu3O7−δ grain boundaries using molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for thed-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angleα. We identify the build-up of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of an HTS symmetric grain boundary.
Figure 2: Top view of a calculated (410) grain boundary.
Figure 3: Tight-binding model for the CuO2 plane.
Figure 4: Charging of the CuO4 squares.
Figure 5: Supercurrent distribution.
Figure 6: Angle dependence of the critical current.

Similar content being viewed by others

References

  1. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors.Rev. Mod. Phys.74, 485–549 (2002).

    Article ADS  Google Scholar 

  2. Dimos, D., Chaudhari, P., Mannhart, J. & LeGoues, F. K. Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals.Phys. Rev. Lett.61, 219–222 (1988).

    Article ADS  Google Scholar 

  3. Chaudhari, P., Dimos, D. & Mannhart, J. inEarlier and Recent Aspects of Superconductivity (eds Bednorz, J. G. & Müller, K. A.) 201–207 (Springer, 1990).

    Book  Google Scholar 

  4. Sigrist, M. & Rice, T. M. Paramagnetic effect in highTc superconductors —a hint ford-wave superconductivity.J. Phys. Soc. Jpn61, 4283–4286 (1992).

    Article ADS  Google Scholar 

  5. Sigrist, M. & Rice, T. M. On the phenomenology of superconductivity in cuprate materials.J. Low Temp Phys.95, 389–393 (1994).

    Article ADS  Google Scholar 

  6. Yokoyama, T., Sawa, Y., Tanaka, Y. & Golubov, A. A. Angular dependence of Josephson currents in unconventional superconducting junctions.Phys. Rev. B75, 020502(R) (2007).

    Article ADS  Google Scholar 

  7. Gurevich, A. & Pashitskii, E. A. Current transport through low-angle grain boundaries in high-temperature superconductors.Phys. Rev. B.57, 13878–13893 (1998).

    Article ADS  Google Scholar 

  8. Stolbov, S. V., Mironova, M. K. & Salama, K. Microscopic origins of the grain boundary effect on the critical current in superconducting copper oxides.Supercond. Sci. Technol.12, 1071–1074 (1999).

    Article ADS  Google Scholar 

  9. Pennycook, S. J. et al. inStudies of High Temperature Superconductors: Microstructures and Related Studies of High Temperature Superconductors-II Vol. 30 (ed. Narlikar, A. V.) Ch. 6 (Nova Science Publishers, 2000).

    Google Scholar 

  10. Hu, C-R. Midgap surface states as a novel signature for d x a 2 − x b 2 -wave superconductivity.Phys. Rev. Lett.72, 1526–1529 (1993).

    Article ADS  Google Scholar 

  11. Tanaka, Y. & Kashiwaya, S. Theory of tunneling spectroscopy ofd-wave superconductors.Phys. Rev. Lett.74, 3451–3454 (1994).

    Article ADS  Google Scholar 

  12. Löfwander, T., Shumeiko, V. S. & Wendin, G. Andreev bound states in high-Tc superconducting junctions.Supercond. Sci. Technol.14, R53–R77 (2001).

    Article ADS  Google Scholar 

  13. Tanaka, Y. & Kashiwaya, S. Theory of the Josephson effect ind-wave superconductors.Phys. Rev. B53, R11957–R11960 (1996).

    Article ADS  Google Scholar 

  14. Barash, Yu. S., Burkhardt, H. & Rainer, D. Low-temperature anomaly in the Josephson critical current of junctions ind-wave superconductors.Phys. Rev. Lett.77, 4070–4073 (1996).

    Article ADS  Google Scholar 

  15. Tanaka, Y. & Kashiwaya, S. Theory of Josephson effects in anisotropic superconductors.Phys. Rev. B56, 892–912 (1997).

    Article ADS  Google Scholar 

  16. Baetzold, R. C. Atomistic simulation of ionic and electronic defects in YBa2Cu3O7 .Phys. Rev. B38, 11304–11312 (1988).

    Article ADS  Google Scholar 

  17. Zhang, X. & Catlow, C. R. A. Molecular dynamics study of oxygen diffusion in YBa2Cu3O6.91 .Phys. Rev. B46, 457–462 (1992).

    Article ADS  Google Scholar 

  18. Liu, P. & Wang, Y. Theoretical study on the structure of Cu(110)-p2×1–O reconstruction.J. Phys. Condens. Matter12, 3955–3966 (2000).

    Article ADS  Google Scholar 

  19. Phillpot, S. R. & Rickman, J. M. Simulated quenching to the zero-temperature limit of the grand-canonical ensemble.J. Chem. Phys.97, 2651–2659 (1992).

    Article ADS  Google Scholar 

  20. Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem.Phys. Rev.94, 1498–1524 (1954).

    Article ADS  Google Scholar 

  21. Harrison, W. A.Electronic Structure and the Properties of Solids (Dover Publications, 1989).

    Google Scholar 

  22. Chmaissem, O., Eckstein, Y. & Kuper, C. G. The structure and a bond-valence-sum study of the 1-2-3 superconductors (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy and YBa2Cu3Oy .Phys. Rev. B63, 174510 (2001).

    Article ADS  Google Scholar 

  23. Brown, I. D. A determination of the oxidation states and internal stress in Ba2YCu3Oxx=6−7 using bond valences.J. Solid State Chem.82, 122–131 (1989).

    Article ADS  Google Scholar 

  24. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides.Phys. Rev. B37, 3759–3761 (1988).

    Article ADS  Google Scholar 

  25. Andersen, B. M., Bobkova, I., Barash, Yu. S. & Hirschfeld, P. J. 0–π transitions in Josephson junctions with antiferromagnetic interlayers.Phys. Rev. Lett.96, 117005–117008 (2006).

    Article ADS  Google Scholar 

  26. Freericks, J. K.Transport in Multilayered Nanostructures. The Dynamical Mean-Field Theory Approach (Imperial College Press, 2006).

    Book  Google Scholar 

  27. Andersen, B. M., Barash, Yu. S., Graser, S. & Hirschfeld, P. J. Josephson effects ind-wave superconductor junctions with antiferromagnetic interlayers.Phys. Rev. B77, 054501 (2008).

    Article ADS  Google Scholar 

  28. Lee, S. et al. Weak-link behavior of grain boundaries in superconducting Ba(Fe1−xCox)2As2 bicrystals.Appl. Phys. Lett.95, 212505 (2009).

    Article ADS  Google Scholar 

  29. Hammerl, G. et al. Possible solution of the grain-boundary problem for applications of high-Tc superconductors.Appl. Phys. Lett.81, 3209–3211 (2002).

    Article ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DOE grant DE-FG02-05ER46236 (P.J.H.), and by the DFG through SFB 484 and TRR 80 (S.G., T.K., R.G. and J.M.) and a research scholarship (S.G.). We are grateful to Yu. S. Barash for important early contributions to the project and we acknowledge fruitful discussions with A. Gurevich and F. Loder. P.J.H. would also like to thank the Kavli Institute for Theoretical Physics for support under NSF-PHY05-51164 during the writing of this manuscript. The authors acknowledge the University of Florida High-Performance Computing Center for providing computational resources and support that have contributed to the research results reported in this article.

Author information

Authors and Affiliations

  1. Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

    S. Graser, T. Kopp, R. Gutser & J. Mannhart

  2. Department of Physics, University of Florida, Gainesville, Florida 32611, USA

    S. Graser & P. J. Hirschfeld

  3. Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

    B. M. Andersen

Authors
  1. S. Graser
  2. P. J. Hirschfeld
  3. T. Kopp
  4. R. Gutser
  5. B. M. Andersen
  6. J. Mannhart

Contributions

R.G. applied the Slater–Koster technique to derive an effective tight-binding model Hamiltonian at the grain boundary and B.M.A. contributed in setting up the Bogoliubov–de Gennes equations for the calculation of the critical current. S.G. carried out the numerical calculations under the supervision of P.J.H. and T.K. J.M. contributed with his experience and knowledge about grain boundaries and the physical length scales involved. All authors contributed to the analysis of the results. P.J.H., T.K., J.M. and S.G. wrote the manuscript.

Corresponding author

Correspondence toS. Graser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 862 kb)

Rights and permissions

About this article

Cite this article

Graser, S., Hirschfeld, P., Kopp, T.et al. How grain boundaries limit supercurrents in high-temperature superconductors.Nature Phys6, 609–614 (2010). https://doi.org/10.1038/nphys1687

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Guilty as charged

  • James K. Freericks
Nature PhysicsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp