Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Article
  • Published:

Optimal decision making and the anterior cingulate cortex

Nature Neurosciencevolume 9pages940–947 (2006)Cite this article

Abstract

Learning the value of options in an uncertain environment is central to optimal decision making. The anterior cingulate cortex (ACC) has been implicated in using reinforcement information to control behavior. Here we demonstrate that the ACC's critical role in reinforcement-guided behavior is neither in detecting nor in correcting errors, but in guiding voluntary choices based on the history of actions and outcomes. ACC lesions did not impair the performance of monkeys (Macaca mulatta) immediately after errors, but made them unable to sustain rewarded responses in a reinforcement-guided choice task and to integrate risk and payoff in a dynamic foraging task. These data suggest that the ACC is essential for learning the value of actions.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the macaque brain and overview of experiments 1 and 2.
Figure 2: Performance in experiment 1A.
Figure 3: Performance for sustaining rewarded behavior following an error in experiment 1.
Figure 4: Estimates of the influence of previous reward history on current choice, in experiment 1.
Figure 5: Postoperative performance in the matching task in experiment 2.
Figure 6: Schematic of a sample choice trial in experiment 3.
Figure 7: Percentage of high reward options selected for each of the three choice pairs across three preoperative (unfilled bars) and one postoperative (hatched bars) sessions.
Figure 8: Coronal sections showing the cingulate lesion in all three monkeys that received surgery in experiments 1–3.

Similar content being viewed by others

References

  1. McCoy, A.N. & Platt, M.L. Risk-sensitive neurons in macaque posterior cingulate cortex.Nat. Neurosci.8, 1220–1227 (2005).

    Article CAS PubMed  Google Scholar 

  2. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex.Nature400, 233–238 (1999).

    Article CAS PubMed  Google Scholar 

  3. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex.Science304, 1782–1787 (2004).

    Article CAS PubMed  Google Scholar 

  4. Murray, E.A., Bussey, T.J. & Wise, S.P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping.Exp. Brain Res.133, 114–129 (2000).

    Article CAS PubMed  Google Scholar 

  5. Sutton, R.S. & Barto, A.G.Reinforcement Learning (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  6. Bayer, H.M. & Glimcher, P.W. Midbrain dopamine neurons encode a quantitative reward prediction error signal.Neuron47, 129–141 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Schultz, W. Getting formal with dopamine and reward.Neuron36, 241–263 (2002).

    Article CAS PubMed  Google Scholar 

  8. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error.Neuron41, 269–280 (2004).

    Article CAS PubMed  Google Scholar 

  9. Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons.J. Neurosci.23, 9913–9923 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Paus, T. Primate anterior cingulate cortex: where motor control, drive and cognition interface.Nat. Rev. Neurosci.2, 417–424 (2001).

    Article CAS PubMed  Google Scholar 

  11. Rushworth, M.F., Walton, M.E., Kennerley, S.W. & Bannerman, D.M. Action sets and decisions in the medial frontal cortex.Trends Cogn. Sci.8, 410–417 (2004).

    Article CAS PubMed  Google Scholar 

  12. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict monitoring and cognitive control.Psychol. Rev.108, 624–652 (2001).

    Article CAS PubMed  Google Scholar 

  13. Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex.Science301, 229–232 (2003).

    Article CAS PubMed  Google Scholar 

  14. Walton, M.E., Devlin, J.T. & Rushworth, M.F. Interactions between decision making and performance monitoring within prefrontal cortex.Nat. Neurosci.7, 1259–1265 (2004).

    Article CAS PubMed  Google Scholar 

  15. Hadland, K.A., Rushworth, M.F., Gaffan, D. & Passingham, R.E. The anterior cingulate and reward-guided selection of actions.J. Neurophysiol.89, 1161–1164 (2003).

    Article CAS PubMed  Google Scholar 

  16. Morecraft, R.J. & Van Hoesen, G.W. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey.Brain Res. Bull.45, 209–232 (1998).

    Article CAS PubMed  Google Scholar 

  17. Amiez, C., Joseph, J.P. & Procyk, E. Anterior cingulate error-related activity is modulated by predicted reward.Eur. J. Neurosci.21, 3447–3452 (2005).

    Article PubMed PubMed Central  Google Scholar 

  18. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward.Science282, 1335–1338 (1998).

    Article CAS PubMed  Google Scholar 

  19. Ito, S., Stuphorn, V., Brown, J.W. & Schall, J.D. Performance monitoring by the anterior cingulate cortex during saccade countermanding.Science302, 120–122 (2003).

    Article CAS PubMed  Google Scholar 

  20. Ullsperger, M. & von Cramon, D.Y. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging.J. Neurosci.23, 4308–4314 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Gehring, W.J., Goss, B., Coles, M.G., Meyer, D.E & Donchin, E. A neural system for error detection and compensation.Psychol. Sci.4, 385–390 (1993).

    Article  Google Scholar 

  22. Holroyd, C.B. & Coles, M.G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity.Psychol. Rev.109, 679–709 (2002).

    Article PubMed  Google Scholar 

  23. Brown, J.W. & Braver, T.S. Learned predictions of error likelihood in the anterior cingulate cortex.Science307, 1118–1121 (2005).

    Article CAS PubMed  Google Scholar 

  24. Fellows, L.K. & Farah, M.J. Is anterior cingulate cortex necessary for cognitive control?Brain128, 788–796 (2005).

    Article PubMed  Google Scholar 

  25. Swick, D. & Turken, A.U. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex.Proc. Natl Acad. Sci. USA99, 16354–16359 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Rushworth, M.F., Hadland, K.A., Gaffan, D. & Passingham, R.E. The effect of cingulate cortex lesions on task switching and working memory.J. Cogn. Neurosci.15, 338–353 (2003).

    Article CAS PubMed  Google Scholar 

  27. Amiez, C., Joseph, J.P. & Procyk, E. Reward encoding in the monkey anterior cingulate cortex.Cereb. Cortex, published online 5 October 2005 (doi:10.1093/cercor/bhj046).

  28. Lau, B. & Glimcher, P.W. Dynamic response-by-response models of matching behavior in rhesus monkeys.J. Exp. Anal. Behav.84, 555–579 (2005).

    Article PubMed PubMed Central  Google Scholar 

  29. Lee, D., Conroy, M.L., McGreevy, B.P. & Barraclough, D.J. Reinforcement learning and decision making in monkeys during a competitive game.Brain Res. Cogn. Brain Res.22, 45–58 (2004).

    Article PubMed  Google Scholar 

  30. Herrnstein, R.J.The Matching Law: Papers in Psychology and Economics (eds. Rachlin, H. & Laibson, D.I.) (Harvard Univ. Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  31. Bush, G. et al. Dorsal anterior cingulate cortex: a role in reward-based decision making.Proc. Natl Acad. Sci. USA99, 523–528 (2002).

    Article CAS PubMed  Google Scholar 

  32. Niki, H. & Watanabe, M. Prefrontal and cingulate unit activity during timing behavior in the monkey.Brain Res.171, 213–224 (1979).

    Article CAS PubMed  Google Scholar 

  33. Genovesio, A., Brasted, P.J., Mitz, A.R. & Wise, S.P. Prefrontal cortex activity related to abstract response strategies.Neuron47, 307–320 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Williams, S.M. & Goldman-Rakic, P.S. Widespread origin of the primate mesofrontal dopamine system.Cereb. Cortex8, 321–345 (1998).

    Article CAS PubMed  Google Scholar 

  35. Murray, E.A., Davidson, M., Gaffan, D., Olton, D.S. & Suomi, S. Effects of fornix transection and cingulate cortical ablation on spatial memory in rhesus monkeys.Exp. Brain Res.74, 173–186 (1989).

    Article CAS PubMed  Google Scholar 

  36. Morris, R., Pandya, D.N. & Petrides, M. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey.J. Comp. Neurol.407, 183–192 (1999).

    Article CAS PubMed  Google Scholar 

  37. Aron, A.R., Robbins, T.W. & Poldrack, R.A. Inhibition and the right inferior frontal cortex.Trends Cogn. Sci.8, 170–177 (2004).

    Article PubMed  Google Scholar 

  38. Roberts, A.C. & Wallis, J.D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset.Cereb. Cortex10, 252–262 (2000).

    Article CAS PubMed  Google Scholar 

  39. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value.J. Neurosci.25, 4806–4812 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Shidara, M. & Richmond, B.J. Anterior cingulate: single neuronal signals related to degree of reward expectancy.Science296, 1709–1711 (2002).

    Article PubMed  Google Scholar 

  41. Wallis, J.D. & Miller, E.K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task.Eur. J. Neurosci.18, 2069–2081 (2003).

    Article PubMed  Google Scholar 

  42. Roesch, M.R. & Olson, C.R. Neuronal activity related to reward value and motivation in primate frontal cortex.Science304, 307–310 (2004).

    Article CAS PubMed  Google Scholar 

  43. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum.Science310, 1337–1340 (2005).

    Article CAS PubMed  Google Scholar 

  44. Barraclough, D.J., Conroy, M.L. & Lee, D. Prefrontal cortex and decision making in a mixed-strategy game.Nat. Neurosci.7, 404–410 (2004).

    Article CAS PubMed  Google Scholar 

  45. Nakamura, K., Roesch, M.R. & Olson, C.R. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict.J. Neurophysiol.93, 884–908 (2005).

    Article PubMed  Google Scholar 

  46. Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.Annu. Rev. Neurosci.28, 403–450 (2005).

    Article CAS PubMed  Google Scholar 

  47. Yu, A.J. & Dayan, P. Uncertainty, neuromodulation, and attention.Neuron46, 681–692 (2005).

    Article CAS PubMed  Google Scholar 

  48. He, S.Q., Dum, R.P. & Strick, P.L. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere.J. Neurosci.15, 3284–3306 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Bates, J.F. & Goldman-Rakic, P.S. Prefrontal connections of medial motor areas in the rhesus monkey.J. Comp. Neurol.336, 211–228 (1993).

    Article CAS PubMed  Google Scholar 

  50. Paxinos, G., Huang, X.F. & Toga, A.W.The Rhesus Monkey Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1999).

    Google Scholar 

Download references

Acknowledgements

We are grateful to D. Gaffan for advice and encouragement. Supported by the Medical Research Council. Additional support from the Clarendon Foundation (S.W.K.), the Wellcome Trust (M.E.W.) and the Royal Society (M.J.B and M.F.S.R.).

Author information

Author notes
  1. Steven W Kennerley

    Present address: Helen Wills Neuroscience Institute, University of California Berkeley, 132 Barker Hall, MC #3190, Berkeley, California, 94720-3190, USA

Authors and Affiliations

  1. Department of Experimental Psychology, South Parks Road, Oxford, OX1 3UD, UK

    Steven W Kennerley, Mark E Walton, Timothy E J Behrens, Mark J Buckley & Matthew F S Rushworth

  2. Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK

    Timothy E J Behrens & Matthew F S Rushworth

Authors
  1. Steven W Kennerley

    You can also search for this author inPubMed Google Scholar

  2. Mark E Walton

    You can also search for this author inPubMed Google Scholar

  3. Timothy E J Behrens

    You can also search for this author inPubMed Google Scholar

  4. Mark J Buckley

    You can also search for this author inPubMed Google Scholar

  5. Matthew F S Rushworth

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSteven W Kennerley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Number of trials to update to the other response after a task-imposed response switch in Experiment 1. (PDF 57 kb)

Supplementary Fig. 2

Inter-response time performance in Experiment 1A. (PDF 54 kb)

Supplementary Fig. 3

Performance for sustaining rewarded behavior following errors that occurred at a task-imposed switch trial or all other errors. (PDF 59 kb)

Supplementary Fig. 4

Relative contributions of the high and low reward-probability responses in determining ropt for the 0.4:0.1 action-reward ratio pairing in Experiment 2. (PDF 84 kb)

Supplementary Fig. 5

The average expected reward per response for each action-reward ratio pair in Experiment 2. (PDF 64 kb)

Supplementary Fig. 6

Group response ratio plot for the action-reward ratio 0.4:0.1. (PDF 79 kb)

Rights and permissions

About this article

Cite this article

Kennerley, S., Walton, M., Behrens, T.et al. Optimal decision making and the anterior cingulate cortex.Nat Neurosci9, 940–947 (2006). https://doi.org/10.1038/nn1724

Download citation

Access through your institution
Buy or subscribe

Associated content

Fool me once, shame on me—fool me twice, blame the ACC

  • Benjamin Y Hayden
  • Michael L Platt
Nature NeuroscienceNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp