Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Article
  • Published:

Hedgehog signaling from the ZLI regulates diencephalic regional identity

Nature Neurosciencevolume 7pages1242–1249 (2004)Cite this article

Abstract

The zona limitans intrathalamica (ZLI), a narrow compartment in the vertebrate forebrain that bisects the diencephalon transversely, expresses the secreted factor sonic hedgehog (Shh). Because genetic disruption ofShh in mouse causes severe early developmental defects, this strategy has not been useful in identifying a ZLI-specific role for this gene. To modulate Shh signaling in a spatiotemporally restricted manner, we carried out gain- and loss-of-function experiments in chick embryos usingin ovo electroporation and found that Shh signaling is required for region-specific gene expression in thalamus and prethalamus, the major diencephalic brain areas flanking the ZLI. We further show that differential competence of thalamic and prethalamic primordia in responding to Shh signaling is regulated by the transcription factor Irx3. We show that, through the release of Shh, the ZLI functions as a local signaling center that regulates the acquisition of identity for these important diencephalic regions.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of embryonic chick brain.
Figure 2: Gene expression in the diencephalon at definitive ZLI stages.
Figure 3: Overexpression of Shh results in expansion of thalamus and prethalamus.
Figure 4: A requirement for Shh signaling in prethalamus and thalamus.
Figure 5: Shh signaling is required for ZLI-specific gene expression.
Figure 6: A 'dorsal truncation' of the ZLI results in a reducedGbx2 expression domain.
Figure 7: Ectopic Irx3 induces thalamic gene expression in the prethalamus.
Figure 8: Ectopic Irx3 induces thalamic gene expression in the prethalamus autonomously and in a Shh-dependent manner.

Similar content being viewed by others

References

  1. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis.Science274, 1109–1115 (1996).

    Article CAS PubMed  Google Scholar 

  2. Jessell, T.M. & Sanes, J.R. Development. The decade of the developing brain.Curr. Opin. Neurobiol.10, 599–611 (2000).

    Article CAS PubMed  Google Scholar 

  3. Pasini, A. & Wilkinson, D.G. Stabilizing the regionalisation of the developing vertebrate central nervous system.Bioessays24, 427–438 (2002).

    Article CAS PubMed  Google Scholar 

  4. Echevarría, D., Vieira, C., Gimeno, L. & Martínez, S. Neuroepithelial secondary organizers and cell fate specification in the developing brain.Brain Res. Brain Res. Rev.43, 179–191 (2003).

    Article PubMed  Google Scholar 

  5. Figdor, M.C. & Stern, C.D. Segmental origin of embryonic diencephalon.Nature363, 630–634 (1993).

    Article CAS PubMed  Google Scholar 

  6. Rubenstein, J.L., Martinez, S., Shimamura, K. & Puelles, L. The embryonic vertebrate forebrain: the prosomeric model.Science266, 578–580 (1994).

    Article CAS PubMed  Google Scholar 

  7. Puelles, L. & Rubenstein, J.L. Forebrain gene expression domains and the evolving prosomeric model.Trends Neurosci.26, 469–476 (2003).

    Article CAS PubMed  Google Scholar 

  8. Larsen, C.W., Zeltser, L.M. & Lumsden, A. Boundary formation and compartition in the avian diencephalon.J. Neurosci.21, 4699–4711 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Zeltser, L.M., Larsen, C.W. & Lumsden, A. A new developmental compartment in the forebrain regulated byLunatic fringe.Nat. Neurosci.4, 683–684 (2001).

    Article CAS PubMed  Google Scholar 

  10. Garcia-Lopez, R., Vieira, C., Echevarria, D. & Martinez, S. Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos.Dev. Biol.268, 514–530 (2004).

    Article CAS PubMed  Google Scholar 

  11. Shimamura, K., Hartigan, D.J., Martinez, S., Puelles, L. & Rubenstein, J.L. Longitudinal organization of the anterior neural plate and neural tube.Development121, 3923–3933 (1995).

    CAS PubMed  Google Scholar 

  12. Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals.Development129, 83–93 (2002).

    CAS PubMed  Google Scholar 

  13. Braun, M.M., Etheridge, A., Bernard, A., Robertson, C.P. & Roelink, H. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain.Development130, 5579–5587 (2003).

    Article CAS PubMed  Google Scholar 

  14. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity.Cell75, 1417–1430 (1993).

    Article CAS PubMed  Google Scholar 

  15. Goodrich, L.V. & Scott, M.P. Hedgehog and patched in neural development and disease.Neuron21, 1243–1257 (1998).

    Article CAS PubMed  Google Scholar 

  16. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis.Cell81, 445–455 (1995).

    Article CAS PubMed  Google Scholar 

  17. Briscoe, J., Pierani, A., Jessell, T.M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube.Cell101, 435–445 (2000).

    Article CAS PubMed  Google Scholar 

  18. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube.Curr. Opin. Neurobiol.11, 43–49 (2001).

    Article CAS PubMed  Google Scholar 

  19. Ericson, J. et al. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube.Cell81, 747–756 (1995).

    Article CAS PubMed  Google Scholar 

  20. Dale, J.K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm.Cell90, 257–269 (1997).

    Article CAS PubMed  Google Scholar 

  21. Agarwala, S., Sanders, T.A. & Ragsdale, C.W. Sonic hedgehog control of size and shape in midbrain pattern formation.Science291, 2147–2150 (2001).

    Article CAS PubMed  Google Scholar 

  22. Britto, J., Tannahill, D. & Keynes, R. A critical role for sonic hedgehog signaling in the early expansion of the developing brain.Nat. Neurosci.5, 103–110 (2002).

    Article CAS PubMed  Google Scholar 

  23. Ruiz, I., Altaba, A., Palma, V. & Dahmane, N. Hedgehog-Gli signaling and the growth of the brain.Nat. Rev. Neurosci.3, 24–33 (2002).

    Article  Google Scholar 

  24. Charron, F., Stein, E., Jeong, J., McMahon, A.P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance.Cell113, 11–23 (2003).

    Article CAS PubMed  Google Scholar 

  25. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches.Neuron39, 937–950 (2003).

    Article CAS PubMed  Google Scholar 

  26. Thibert, C. et al. Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog.Science301, 843–846 (2003).

    Article CAS PubMed  Google Scholar 

  27. Chiang, C. et al. Cyclopia and defective axial patterning in mice lackingSonic hedgehog gene function.Nature383, 407–413 (1996).

    Article CAS PubMed  Google Scholar 

  28. Muenke, M. & Beachy, P.A. Genetics of ventral forebrain development and holoprosencephaly.Curr. Opin. Genet. Dev.10, 262–269 (2000).

    Article CAS PubMed  Google Scholar 

  29. Ishibashi, M. & McMahon, A.P. A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo.Development129, 4807–4819 (2002).

    CAS PubMed  Google Scholar 

  30. Nakamura, H., Watanabe, Y. & Funahashi, J. Misexpression of genes in brain vesicles byin ovo electroporation.Dev. Growth Differ.42, 199–201 (2000).

    Article CAS PubMed  Google Scholar 

  31. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling.Cell90, 169–180 (1997).

    Article CAS PubMed  Google Scholar 

  32. Kitamura, K., Miura, H., Yanazawa, M., Miyashita, T. & Kato, K. Expression patterns ofBrx1 (Rieg gene),Sonic hedgehog,Nkx2.2,Dlx1 andArx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation.Mech. Dev.67, 83–96 (1997).

    Article CAS PubMed  Google Scholar 

  33. Marigo, V., Davey, R.A., Zuo, Y., Cunningham, J.M. & Tabin, C.J. Biochemical evidence that patched is the Hedgehog receptor.Nature384, 176–179 (1996).

    Article CAS PubMed  Google Scholar 

  34. Ingham, P.W. Transducing Hedgehog: the story so far.EMBO J.17, 3505–3511 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Caspary, T. et al. MouseDispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling.Curr. Biol.12, 1628–1632 (2002).

    Article CAS PubMed  Google Scholar 

  36. Kawakami, T. et al. Mousedispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling.Development129, 5753–5765 (2002).

    Article CAS PubMed  Google Scholar 

  37. Ma, Y. et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched.Cell111, 63–75 (2002).

    Article CAS PubMed  Google Scholar 

  38. Hashimoto-Torii, K. et al. Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus.Mech. Dev.120, 1097–1111 (2003).

    Article CAS PubMed  Google Scholar 

  39. Niss, K. & Leutz, A. Expression of the homeobox geneGBX2 during chicken development.Mech. Dev.76, 151–155 (1998).

    Article CAS PubMed  Google Scholar 

  40. Stoykova, A. & Gruss, P. Roles ofPax-genes in developing and adult brain as suggested by expression patterns.J. Neurosci.14, 1395–1412 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Briscoe, J., Chen, Y., Jessell, T.M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube.Mol. Cell7, 1279–1291 (2001).

    Article CAS PubMed  Google Scholar 

  42. Gomez-Skarmeta, J.L. & Modolell, J.Iroquois genes: genomic organization and function in vertebrate neural development.Curr. Opin. Genet. Dev.12, 403–408 (2002).

    Article CAS PubMed  Google Scholar 

  43. Matsumoto, K. et al. The prepattern transcription factor Irx2, a target of the FGF8/MAPK cascade, is involved in cerebellum formation.Nat. Neurosci.7, 605–612 (2004).

    Article CAS PubMed  Google Scholar 

  44. Hargrave, M. et al. The HMG box transcription factor geneSox14 marks a novel subset of ventral interneurons and is regulated by sonic hedgehog.Dev. Biol.219, 142–153 (2000).

    Article CAS PubMed  Google Scholar 

  45. Liu, A. & Joyner, A.L. Early anterior/posterior patterning of the midbrain and cerebellum.Annu. Rev. Neurosci.24, 869–896 (2001).

    Article CAS PubMed  Google Scholar 

  46. Rhinn, M. & Brand, M. The midbrain-hindbrain boundary organizer.Curr. Opin. Neurobiol.11, 34–42 (2001).

    Article CAS PubMed  Google Scholar 

  47. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer.Nat. Rev. Neurosci.2, 99–108 (2001).

    Article CAS PubMed  Google Scholar 

  48. Miyashita-Lin, E.M., Hevner, R., Wassarman, K.M., Martinez, S. & Rubenstein, J.L. Early neocortical regionalization in the absence of thalamic innervation.Science285, 906–909 (1999).

    Article CAS PubMed  Google Scholar 

  49. Panganiban, G. & Rubenstein, J.L. Developmental functions of theDistal-less/Dlx homeobox genes.Development129, 4371–4386 (2002).

    CAS PubMed  Google Scholar 

  50. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells.Cell105, 43–55 (2001).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Briscoe, J. Dodd, J. Gilthorpe, M. Goulding, M. Hargrave, A. Leutz, T. Ogura, C. Ragsdale, J. Rubenstein, A. Ruiz i Altaba, F. Schubert and C. Tabin for generously providing reagents and J. Gilthorpe, R. Wingate and other members of our laboratory for constructive criticism on the manuscript. This work was supported by the UK Medical Research Council and the Wellcome Trust.

Author information

Authors and Affiliations

  1. MRC Centre for Developmental Neurobiology, 4th Floor, New Hunt's House, Guy's Hospital Campus, King's College, London, SE1 1UL, UK

    Clemens Kiecker & Andrew Lumsden

Authors
  1. Clemens Kiecker
  2. Andrew Lumsden

Corresponding author

Correspondence toAndrew Lumsden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of the role of Shh signalling from the ZLI in thalamic and prethalamic development. Regional gene expression is represented in the same colours as inFig. 1. (PDF 99 kb)

Rights and permissions

About this article

Cite this article

Kiecker, C., Lumsden, A. Hedgehog signaling from the ZLI regulates diencephalic regional identity.Nat Neurosci7, 1242–1249 (2004). https://doi.org/10.1038/nn1338

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp