Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Article
  • Published:

Synaptic scaffold evolution generated components of vertebrate cognitive complexity

Nature Neurosciencevolume 16pages16–24 (2013)Cite this article

Subjects

Abstract

The origins and evolution of higher cognitive functions, including complex forms of learning, attention and executive functions, are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 million years ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report, to our knowledge, the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in each of the fourDlg paralogs showed that simple associative learning requiredDlg4, whereasDlg2 andDlg3 diversified to have opposing functions in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testingDlg2 mutations in both species showed thatDlg2's role in complex learning, cognitive flexibility and attention has been highly conserved over 100 million years.Dlg-family mutations underlie psychiatric disorders, suggesting that genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissecting the role ofDlg paralogs in different components of cognition.
Figure 2: Distinct roles of Dlg paralogs in simple forms of conditioning and associative learning.
Figure 3: Dlg paralogs have distinct functions in cognitive flexibility and response inhibition.
Figure 4: Dlg paralogs are differentially involved in attentional processing and response control.
Figure 5: Dlg paralogs have diversified to play distinct roles in different cognitive functions.
Figure 6: Conservation ofDlg2 functions in mice and humans.

Similar content being viewed by others

References

  1. Gregory, R.L. ed.The Oxford Companion to the Mind (Oxford Univ. Press, 1987).

  2. Fray, P.J. & Robbins, T.W. CANTAB battery: proposed utility in neurotoxicology.Neurotoxicol. Teratol.18, 499–504 (1996).

    Article CAS  Google Scholar 

  3. Barnett, J.H. et al. Assessing cognitive function in clinical trials of schizophrenia.Neurosci. Biobehav. Rev.34, 1161–1177 (2010).

    Article  Google Scholar 

  4. Bussey, T.J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats.Neuropharmacology62, 1191–1203 (2012).

    Article CAS  Google Scholar 

  5. Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications.Nat. Rev. Genet.10, 725–732 (2009).

    Article CAS  Google Scholar 

  6. Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeastSaccharomyces cerevisiae.Nature428, 617–624 (2004).

    Article CAS  Google Scholar 

  7. Adams, K.L. & Wendel, J.F. Polyploidy and genome evolution in plants.Curr. Opin. Plant Biol.8, 135–141 (2005).

    Article CAS  Google Scholar 

  8. Dehal, P. & Boore, J.L. Two rounds of whole genome duplication in the ancestral vertebrate.PLoS Biol.3, e314 (2005).

    Article  Google Scholar 

  9. Conrad, B. & Antonarakis, S.E. Gene duplication: a drive for phenotypic diversity and cause of human disease.Annu. Rev. Genomics Hum. Genet.8, 17–35 (2007).

    Article CAS  Google Scholar 

  10. Moore, B.R. The evolution of learning.Biol. Rev. Camb. Philos. Soc.79, 301–335 (2004).

    Article  Google Scholar 

  11. Grant, S.G. A general basis for cognition in the evolution of synapse signaling complexes.Cold Spring Harb. Symp. Quant. Biol.74, 249–257 (2009).

    Article CAS  Google Scholar 

  12. McGee, A.W. et al. PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum.J. Neurosci.21, 3085–3091 (2001).

    Article CAS  Google Scholar 

  13. Cuthbert, P.C. et al. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies.J. Neurosci.27, 2673–2682 (2007).

    Article CAS  Google Scholar 

  14. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein.Nature396, 433–439 (1998).

    Article CAS  Google Scholar 

  15. Woods, D.F., Hough, C., Peel, D., Callaini, G. & Bryant, P.J. Dlg protein is required for junction structure, cell polarity, and proliferation control inDrosophila epithelia.J. Cell Biol.134, 1469–1482 (1996).

    Article CAS  Google Scholar 

  16. Bossinger, O., Klebes, A., Segbert, C., Theres, C. & Knust, E. Zonula adherens formation inCaenorhabditis elegans requires dlg-1, the homologue of theDrosophila gene discs large.Dev. Biol.230, 29–42 (2001).

    Article CAS  Google Scholar 

  17. Caruana, G. & Bernstein, A. Craniofacial dysmorphogenesis including cleft palate in mice with an insertional mutation in the discs large gene.Mol. Cell. Biol.21, 1475–1483 (2001).

    Article CAS  Google Scholar 

  18. Bussey, T.J., Everitt, B.J. & Robbins, T.W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.Behav. Neurosci.111, 908–919 (1997).

    Article CAS  Google Scholar 

  19. Morton, A.J., Skillings, E., Bussey, T.J. & Saksida, L.M. Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system.Nat. Methods3, 767 (2006).

    Article CAS  Google Scholar 

  20. Talpos, J.C., Winters, B.D., Dias, R., Saksida, L.M. & Bussey, T.J. A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease.Psychopharmacology (Berl.)205, 157–168 (2009).

    Article CAS  Google Scholar 

  21. Bartko, S.J., Vendrell, I., Saksida, L.M. & Bussey, T.J. A computer-automated touchscreen paired-associates learning (PAL) task for mice: impairments following administration of scopolamine or dicyclomine and improvements following donepezil.Psychopharmacology (Berl.)214, 537–548 (2011).

    Article CAS  Google Scholar 

  22. Chudasama, Y. & Robbins, T.W. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.J. Neurosci.23, 8771–8780 (2003).

    Article CAS  Google Scholar 

  23. Bussey, T.J., Muir, J.L., Everitt, B.J. & Robbins, T.W. Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat.Behav. Neurosci.111, 920–936 (1997).

    Article CAS  Google Scholar 

  24. Brigman, J.L. et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit.Learn. Mem.15, 50–54 (2008).

    Article  Google Scholar 

  25. Robbins, T.W. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry.Psychopharmacology (Berl.)163, 362–380 (2002).

    Article CAS  Google Scholar 

  26. Romberg, C., Mattson, M.P., Mughal, M.R., Bussey, T.J. & Saksida, L.M. Impaired attention in the 3xTgAD mouse model of Alzheimer′s disease: rescue by donepezil (Aricept).J. Neurosci.31, 3500–3507 (2011).

    Article CAS  Google Scholar 

  27. Bayés, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density.Nat. Neurosci.14, 19–21 (2011).

    Article  Google Scholar 

  28. Bayés, A. et al. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins.PLoS ONE7, e46683 (2012).

    Article  Google Scholar 

  29. Hawrylycz, M.J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome.Nature489, 391–399 (2012).

    Article CAS  Google Scholar 

  30. Konopka, G. et al. Human-specific transcriptional networks in the brain.Neuron75, 601–617 (2012).

    Article CAS  Google Scholar 

  31. Xu, B. et al. Strong association ofde novo copy number mutations with sporadic schizophrenia.Nat. Genet.40, 880–885 (2008).

    Article CAS  Google Scholar 

  32. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.Science320, 539–543 (2008).

    Article CAS  Google Scholar 

  33. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia.Nature455, 237–241 (2008).

  34. Kirov, G. et al.De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.Mol. Psychiatry17, 142–153 (2012).

    Article CAS  Google Scholar 

  35. Robbins, T.W. Animal models of neuropsychiatry revisited: a personal tribute to Teitelbaum.Behav. Brain Res.231, 337–342 (2012).

    Article CAS  Google Scholar 

  36. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex.Science302, 1181–1185 (2003).

    Article CAS  Google Scholar 

  37. Carlisle, H.J., Fink, A.E., Grant, S.G. & O'Dell, T.J. Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity.J. Physiol. (Lond.)586, 5885–5900 (2008).

    Article CAS  Google Scholar 

  38. Ryan, T.J. et al. Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior.Nat. Neurosci. doi:10.1038/nn.3277 (2 December 2012).

  39. Tarpey, P. et al. Mutations in theDLG3 gene cause nonsyndromic X-linked mental retardation.Am. J. Hum. Genet.75, 318–324 (2004).

    Article CAS  Google Scholar 

  40. Leeson, V.C. et al. Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome.Biol. Psychiatry66, 586–593 (2009).

    Article  Google Scholar 

  41. Waltz, J.A. & Gold, J.M. Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction.Schizophr. Res.93, 296–303 (2007).

    Article  Google Scholar 

  42. Barnett, J.H. et al. Visuospatial learning and executive function are independently impaired in first-episode psychosis.Psychol. Med.35, 1031–1041 (2005).

    Article  Google Scholar 

  43. Holt, D.J. et al. Extinction memory is impaired in schizophrenia.Biol. Psychiatry65, 455–463 (2009).

    Article  Google Scholar 

  44. Luck, S.J. & Gold, J.M. The construct of attention in schizophrenia.Biol. Psychiatry64, 34–39 (2008).

    Article  Google Scholar 

  45. Mottron, L., Dawson, M., Soulieres, I., Hubert, B. & Burack, J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception.J. Autism Dev. Disord.36, 27–43 (2006).

    Article  Google Scholar 

  46. van de Lagemaat, L.N. & Grant, S.G. Genome variation and complexity in the autism spectrum.Neuron67, 8–10 (2010).

    Article CAS  Google Scholar 

  47. Fernández, E. et al. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins.Mol. Syst. Biol.5, 269 (2009).

    Article  Google Scholar 

  48. Conant, G.C. & Wolfe, K.H. Turning a hobby into a job: how duplicated genes find new functions.Nat. Rev. Genet.9, 938–950 (2008).

    Article CAS  Google Scholar 

  49. Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution.Cell134, 25–36 (2008).

    Article CAS  Google Scholar 

  50. Emes, R.D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity.Nat. Neurosci.11, 799–806 (2008).

    Article CAS  Google Scholar 

  51. Bartko, S.J. et al. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method.Neuropharmacology61, 1366–1378 (2011).

    Article CAS  Google Scholar 

  52. Suls, A. et al. Microdeletions involving theSCN1A gene may be common inSCN1A-mutation-negative SMEI patients.Hum. Mutat.27, 914–920 (2006).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Elsegood and D. Fricker for mouse husbandry and genotyping, T.W. Robbins for advice on CANTAB, J. Barnett for assistance with CANTAB control data and T.W. Robbins and T.J. O'Dell for comments on the manuscript. Figure illustration contribution by D.J. Maizels. J.N., N.H.K., L.N.L. and S.G.N.G. was supported by The Wellcome Trust, Genes to Cognition Program, The Medical Research Council (MRC) and European Union programs (Project GENCODYS no. 241995, Project EUROSPIN no. 242498 and Project SYNSYS no. 242167). M.J. was supported by grants from RS Macdonald Charitable Trust and Academy of Medical Sciences/The Wellcome Trust.

Author information

Author notes
  1. Timothy J Bussey and Seth G N Grant: These authors contributed equally to this work.

Authors and Affiliations

  1. Genes to Cognition Programme, Centre for Clinical Brain Sciences and Centre for Neuroregeneration, The University of Edinburgh, Edinburgh, UK

    Jess Nithianantharajah, Noboru H Komiyama, Louie N van de Lagemaat & Seth G N Grant

  2. Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, UK

    Jess Nithianantharajah, Noboru H Komiyama, Louie N van de Lagemaat & Seth G N Grant

  3. Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK

    Andrew McKechanie, Mandy Johnstone & Douglas H Blackwood

  4. The Patrick Wild Centre, The University of Edinburgh, Edinburgh, UK

    Andrew McKechanie

  5. Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

    David St Clair

  6. School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

    Richard D Emes & Timothy J Bussey

  7. Department of Experimental Psychology, University of Cambridge, Cambridge, UK

    Lisa M Saksida & Timothy J Bussey

  8. The Medical Research Council and The Wellcome Trust Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK

    Lisa M Saksida & Timothy J Bussey

Authors
  1. Jess Nithianantharajah

    You can also search for this author inPubMed Google Scholar

  2. Noboru H Komiyama

    You can also search for this author inPubMed Google Scholar

  3. Andrew McKechanie

    You can also search for this author inPubMed Google Scholar

  4. Mandy Johnstone

    You can also search for this author inPubMed Google Scholar

  5. Douglas H Blackwood

    You can also search for this author inPubMed Google Scholar

  6. David St Clair

    You can also search for this author inPubMed Google Scholar

  7. Richard D Emes

    You can also search for this author inPubMed Google Scholar

  8. Louie N van de Lagemaat

    You can also search for this author inPubMed Google Scholar

  9. Lisa M Saksida

    You can also search for this author inPubMed Google Scholar

  10. Timothy J Bussey

    You can also search for this author inPubMed Google Scholar

  11. Seth G N Grant

    You can also search for this author inPubMed Google Scholar

Contributions

J.N., N.H.K., L.M.S., T.J.B. and S.G.N.G. conceived and designed the experiments. J.N. performed all mouse experiments and all analysis in the manuscript. A.M. administered CANTAB tests. M.J. performedDLG2 CNV genotyping. A.M., D.H.B. and D.S.C. collected clinical data. R.D.E. provided sequence analysis and L.N.L. gene expression correlation analysis. J.N., T.J.B. and S.G.N.G. wrote the manuscript with input from all authors.

Corresponding author

Correspondence toSeth G N Grant.

Ethics declarations

Competing interests

T.J.B. and L.M.S. consult for Campden Instruments.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–2 (PDF 1222 kb)

Rights and permissions

About this article

Cite this article

Nithianantharajah, J., Komiyama, N., McKechanie, A.et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity.Nat Neurosci16, 16–24 (2013). https://doi.org/10.1038/nn.3276

Download citation

Access through your institution
Buy or subscribe

Associated content

Retooling spare parts: gene duplication and cognition

  • T Grant Belgard
  • Daniel H Geschwind
Nature NeuroscienceNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp