Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Methods
  • Brief Communication
  • Published:

Heritable genome editing inC. elegans via a CRISPR-Cas9 system

Nature Methodsvolume 10pages741–743 (2013)Cite this article

Subjects

Abstract

We report the use of clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease Cas9 to target genomic sequences in theCaenorhabditis elegans germ line using single-guide RNAs that are expressed from aU6 small nuclear RNA promoter. Our results demonstrate that targeted, heritable genetic alterations can be achieved inC. elegans, providing a convenient and effective approach for generating loss-of-function mutants.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vectors that drive expression of Cas9 and sgRNAs inC. elegans.
Figure 2: Heritable, targeted gene disruptions in the germ line using CRISPR-Cas systems.

Similar content being viewed by others

References

  1. Wiedenheft, B., Sternberg, S.H. & Doudna, J.A.Nature482, 331–338 (2012).

    Article CAS  Google Scholar 

  2. Terns, M.P. & Terns, R.M.Curr. Opin. Microbiol.14, 321–327 (2011).

    Article CAS  Google Scholar 

  3. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V.Proc. Natl. Acad. Sci. USA109, E2579–E2586 (2012).

    Article CAS  Google Scholar 

  4. Jinek, M. et al.Science337, 816–821 (2012).

    Article CAS  Google Scholar 

  5. Dicarlo, J.E. et al.Nucleic Acids Res.41, 4336–4343 (2013).

    Article CAS  Google Scholar 

  6. Gratz, S.J. et al.Genetics advance online publication 24 May 2013 (doi:10.1534/genetics.113.152710).

    Article CAS  Google Scholar 

  7. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S.Nat. Biotechnol.31, 230–232 (2013).

    Article CAS  Google Scholar 

  8. Cong, L. et al.Science339, 819–823 (2013).

    Article CAS  Google Scholar 

  9. Jinek, M. et al. RNA-programmed genome editing in human cells.eLife2, e00471 (2013).

    Article  Google Scholar 

  10. Mali, P. et al.Science339, 823–826 (2013).

    Article CAS  Google Scholar 

  11. Hwang, W.Y. et al.Nat. Biotechnol.31, 227–229 (2013).

    Article CAS  Google Scholar 

  12. Wang, H. et al.Cell153, 410–418 (2013).

    Google Scholar 

  13. Frokjaer-Jensen, C., Davis, M.W., Ailion, M. & Jorgensen, E.M.Nat. Methods9, 117–118 (2012).

    Article CAS  Google Scholar 

  14. Miyagishi, M. & Taira, K.Nat. Biotechnol.20, 497–500 (2002).

    Article CAS  Google Scholar 

  15. Fruscoloni, P., Zamboni, M., Panetta, G., De Paolis, A. & Tocchini-Valentini, G.P.Nucleic Acids Res.23, 2914–2918 (1995).

    Article CAS  Google Scholar 

  16. Zecherle, G.N., Whelen, S. & Hall, B.D.Mol. Cell Biol.16, 5801–5810 (1996).

    Article CAS  Google Scholar 

  17. von Mende, N., Bird, D.M., Albert, P.S. & Riddle, D.L.Cell55, 567–576 (1988).

    Article CAS  Google Scholar 

  18. Maduro, M. & Pilgrim, D.Genetics141, 977–988 (1995).

    CAS PubMed PubMed Central  Google Scholar 

  19. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V.EMBO J.10, 3959–3970 (1991).

    Article CAS  Google Scholar 

  20. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A.Nat. Biotechnol.31, 233–239 (2013).

    Article CAS  Google Scholar 

  21. Brenner, S.Genetics77, 71–94 (1974).

    CAS PubMed PubMed Central  Google Scholar 

  22. Thomas, J., Lea, K., Zucker-Aprison, E. & Blumenthal, T.Nucleic Acids Res.18, 2633–2642 (1990).

    Article CAS  Google Scholar 

  23. Meyer, L.R. et al.Nucleic Acids Res.41, D64–D69 (2013).

    Article CAS  Google Scholar 

  24. Gibson, D.G. et al.Nat. Methods6, 343–345 (2009).

    Article CAS  Google Scholar 

  25. Kadandale, P., Chatterjee, I. & Singson, A.Methods Mol. Biol.518, 123–133 (2009).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank members of theCaenorhabditis Genetics Center for providing the N2 strain used in our experiments, and B. Stern, A. Murray, A. Saltzman, Joe Calarco and members of the Calarco laboratory for comments on the manuscript. This work was supported by US National Institutes of Health Early Independence Award (1DP5OD009153) and additional support from Harvard University to J.A.C., by National Institutes of Health grant R01GM072551 to M.P.C., and a National Human Genome Research Institute Center of Excellence in Genome Sciences award to G.M.C. A.E.F. is supported by a Ralph Ellison/American Federation for Aging Research postdoctoral fellowship.

Author information

Authors and Affiliations

  1. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA

    Ari E Friedland, Yonatan B Tzur, Monica P Colaiácovo & George M Church

  2. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA

    Kevin M Esvelt & George M Church

  3. Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA

    John A Calarco

Authors
  1. Ari E Friedland

    You can also search for this author inPubMed Google Scholar

  2. Yonatan B Tzur

    You can also search for this author inPubMed Google Scholar

  3. Kevin M Esvelt

    You can also search for this author inPubMed Google Scholar

  4. Monica P Colaiácovo

    You can also search for this author inPubMed Google Scholar

  5. George M Church

    You can also search for this author inPubMed Google Scholar

  6. John A Calarco

    You can also search for this author inPubMed Google Scholar

Contributions

A.E.F., K.M.E. and J.A.C. conceived of and designed experiments, with help from Y.B.T.; A.E.F. and J.A.C. assembled vectors; A.E.F. and J.A.C. performed microinjections and screened mutants; A.E.F., J.A.C. and Y.B.T. performed off-target genotyping analysis; A.E.F., K.M.E. and J.A.C. wrote the manuscript with input from Y.B.T., M.P.C. and G.M.C.

Corresponding authors

Correspondence toGeorge M Church orJohn A Calarco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–4, and Supplementary Tables 1 and 2 (PDF 5711 kb)

Supplementary Video 1

Movie of a wild-type (N2 strain) worm. (MOV 1114 kb)

Supplementary Video 2

Movie of anunc-119 worm created by Cas9-mediated gene disruption. (MOV 1739 kb)

Supplementary Video 3

Movie of adpy-13 worm created by Cas9-mediated gene disruption. (MOV 1641 kb)

Rights and permissions

About this article

Cite this article

Friedland, A., Tzur, Y., Esvelt, K.et al. Heritable genome editing inC. elegans via a CRISPR-Cas9 system.Nat Methods10, 741–743 (2013). https://doi.org/10.1038/nmeth.2532

Download citation

Access through your institution
Buy or subscribe

Associated content

Collection

Nobel Prize in Chemistry 2020

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp