- Letter
- Published:
A ferroelectric memristor
- André Chanthbouala1,
- Vincent Garcia1,
- Ryan O. Cherifi1,
- Karim Bouzehouane1,
- Stéphane Fusil1,2,
- Xavier Moya3,
- Stéphane Xavier4,
- Hiroyuki Yamada1,5,
- Cyrile Deranlot1,
- Neil D. Mathur3,
- Manuel Bibes1,
- Agnès Barthélémy1 &
- …
- Julie Grollier1
Nature Materialsvolume 11, pages860–864 (2012)Cite this article
29kAccesses
1126Citations
17Altmetric
Subjects
Abstract
Memristors are continuously tunable resistors that emulate biological synapses1,2. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, although the details of the mechanism remain under debate3,4,5. Purely electronic memristors based on well-established physical phenomena with albeit modest resistance changes have also emerged6,7. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers8,9,10 yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth11,12, we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Chua, L. O. Memristor—the missing circuit element.IEEE Trans. Circuit Theory18, 507–519 (1971).
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found.Nature453, 80–83 (2008).
Yang, J. J. et al. Memristive switching mechanisms for metal/oxide/metal nanodevices.Nature Nanotech.3, 429–433 (2008).
Jo, S. H., Chang, T., Bhadviya, B. B., Mazumder, P. & Lu, W. Nanoscale memristor device as synapse in neuromorphic systems.Nano Lett.10, 1297–1301 (2010).
Kwon, D-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory.Nature Nanotech.5, 148–153 (2010).
Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion.IEEE Electron Device Lett.30, 294–297 (2009).
Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities.Nature Phys.7, 626–630 (2011).
Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch.IBM Tech. Discl. Bull.13, 2161 (1971).
Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states.Nature460, 81–84 (2009).
Bibes, M., Grollier, J., Barthélémy, A. & Mage, J-C. Ferroelectric device with adjustable resistance, WO 2010142762 A1 (2010).
Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching.J. Phys. Soc. Jpn31, 506–510 (1970).
Orihara, H., Hashimoto, S. & Ishibashi, Y. Study on D–E hysteresis loop of TGS based on the Avrami-type model.J. Phys. Soc. Jpn63, 1601–1610 (1994).
Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale.Nano Lett.9, 3539–3543 (2009).
Chanthbouala, A et al. Solid-state memories using ferroelectric tunnel junctions.Nature Nanotech.7, 101–104 (2012).
Pantel, D., Goetze, S, Hesse, D & Alexe, M. Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films.ACS Nano5, 6032–6038 (2011).
Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions.Phys. Rev. Lett.94, 246802 (2005).
Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions.Phys. Rev. B72, 125341 (2005).
Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric.Science313, 181–183 (2006).
Catalan, G., Scott, J. F., Schilling, A. & Gregg, J. M. Wall thickness dependence of the scaling law for ferroic stripe domains.J. Phys. Condens. Matter19, 022201 (2007).
Catalan, G. et al. Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3 .Phys. Rev. Lett.100, 027602 (2008).
Bibes, M. Nanoferronics is a winning combination.Nature Mater.11, 354–357 (2012).
Bolten, D., Böttger, U. & Waser, R. Effect of interfaces in Monte Carlo computer simulations of ferroelectric materials.Appl. Phys. Lett.84, 2379–2381 (2004).
Kim, D. J. et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors.Appl. Phys. Lett.91, 132903 (2007).
Gruverman, A. Wu & Scott, J. F. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale.Phys. Rev. Lett.100, 097601 (2008).
Chua, L. O. & Kang, S. M. Memristive devices and systems.Proc. IEEE64, 209–223 (1976).
Shin, Y-H., Grinberg, I., Chen, I-W. & Rappe, A.M. Nucleation and growth mechanism of ferroelectric domain-wall motion.Nature449, 881–884 (2007).
Linares-Barranco, B. & Serrano-Gotarredona, T. Memristance can explain spike-time-dependent-plasticity in neural synapses, Available fromNature Precedings http://hdl.handle.net/10101/npre.2009.3010.1 (2009).
Jo, J. Y. et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films.Phys. Rev. Lett.102, 045701 (2009).
Du, X. F. & Chen, I. W. Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films.J. Appl. Phys.83, 7789–7798 (1998).
Tarangtsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films.Phys. Rev. B66, 214109 (2002).
Jo, J. Y. et al. Domain switching kinetics in disordered ferroelectric thin films.Phys. Rev. Lett.99, 267602 (2007).
Pertsev, N.A. et al. Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films.Appl. Phys. Lett.83, 3356–3358 (2003).
Acknowledgements
Financial support from the European Research Council (ERC Advanced Grant No. 267579 and ERC Starting Grant No. 259068) and the French Agence Nationale de la Recherche (ANR) MHANN and NOMILOPS are acknowledged. X.M. acknowledges Herchel Smith Fellowship support. We would like to thank J. F. Scott, B. Dkhil and L. Bellaiche for useful comments.
Author information
Authors and Affiliations
Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, Campus de l’Ecole Polytechnique, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
André Chanthbouala, Vincent Garcia, Ryan O. Cherifi, Karim Bouzehouane, Stéphane Fusil, Hiroyuki Yamada, Cyrile Deranlot, Manuel Bibes, Agnès Barthélémy & Julie Grollier
Université d’Evry-Val d’Essonne, Bd. F. Mitterrand, 91025 Evry cedex, France
Stéphane Fusil
Department of Materials Science, University of Cambridge, Cambridge CB2 3QZ, UK
Xavier Moya & Neil D. Mathur
Thales Research and Technology, 1 Av. A. Fresnel, Campus de l’Ecole Polytechnique, 91767 Palaiseau, France
Stéphane Xavier
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
Hiroyuki Yamada
- André Chanthbouala
Search author on:PubMed Google Scholar
- Vincent Garcia
Search author on:PubMed Google Scholar
- Ryan O. Cherifi
Search author on:PubMed Google Scholar
- Karim Bouzehouane
Search author on:PubMed Google Scholar
- Stéphane Fusil
Search author on:PubMed Google Scholar
- Xavier Moya
Search author on:PubMed Google Scholar
- Stéphane Xavier
Search author on:PubMed Google Scholar
- Hiroyuki Yamada
Search author on:PubMed Google Scholar
- Cyrile Deranlot
Search author on:PubMed Google Scholar
- Neil D. Mathur
Search author on:PubMed Google Scholar
- Manuel Bibes
Search author on:PubMed Google Scholar
- Agnès Barthélémy
Search author on:PubMed Google Scholar
- Julie Grollier
Search author on:PubMed Google Scholar
Contributions
V.G., M.B., A.B. and J.G. designed the experiment. X.M., S.X., H.Y., C.D. and N.D.M. fabricated the samples. A.C., V.G., K.B., S.F. and M.B. performed the measurements. A.C., V.G., R.O.C., M.B., A.B. and J.G. analysed the data. M.B., A.B. and J.G. wrote the manuscript. All authors discussed the data and contributed to the manuscript.
Corresponding author
Correspondence toAgnès Barthélémy.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 924 kb)
Rights and permissions
About this article
Cite this article
Chanthbouala, A., Garcia, V., Cherifi, R.et al. A ferroelectric memristor.Nature Mater11, 860–864 (2012). https://doi.org/10.1038/nmat3415
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Electric-field-induced crystallization of Hf0.5Zr0.5O2 thin film based on phase-field modeling
- Zhaobo Liu
- Xiaoming Shi
- Houbing Huang
npj Quantum Materials (2024)
Floating/grounded charged controlled memristor emulator using DVCCTA
- Nidhee Bhuwal
- Manoj Kumar Majumder
- Deepika Gupta
Journal of Computational Electronics (2024)
Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses
- Tianming Sun
- Bin Feng
- Lei Liu
Nano-Micro Letters (2024)
Implementation of threshold- and memory-switching memristors based on electrochemical metallization in an identical ferroelectric electrolyte
- Chansoo Yoon
- Gwangtaek Oh
- Bae Ho Park
NPG Asia Materials (2023)
Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect
- Pingfan Gu
- Cong Wang
- Yu Ye
Nature Communications (2023)


