- Review Article
- Published:
Nanoionics-based resistive switching memories
Nature Materialsvolume 6, pages833–840 (2007)Cite this article
38kAccesses
4608Citations
20Altmetric
Abstract
Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout


© 1998 WILEY

© 2005 IEEE


© 2006 OUP

© 2000 AIP


© 2007 WILEY


© 2007 WILEY
Similar content being viewed by others
References
Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films.J. Appl. Phys.33, 2669–2682 (1962).
Dearnaley, G., Stoneham, A. M. & Morgan, D. V. Electrical phenomena in amorphous oxide films.Rep. Prog. Phys.33, 1129–1191 (1970).
Oxley, D. P. Electroforming, switching and memory effects in oxide thin films.Electrocomponent Sci. Technol. UK3, 217–224 (1977).
Pagnia, H. & Sotnik, N. Bistable switching in electroformed metal-insulator-metal devices.Phys. Status Solidi108, 11–65 (1988).
Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites.Nature388, 50–52 (1997).
Kozicki, M. N., Yun, M., Hilt, L. & Singh, A. Applications of programmable resistance changes in metal-doped chalcogenides.Pennington NJ USA: Electrochem. Soc. 298–309 (1999).
Beck, A., Bednorz, J. G., Gerber, C., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications.Appl. Phys. Lett.77, 139–141 (2000).
Chudnovskii, F. A., Odynets, L. L., Pergament, A. L. & Stefanovich, G. B. Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism.J. Solid State Chem.122, 95–99 (1996).
Bruyere, J. C. & Chakraverty, B. K. Switching and negative resistance in thin films of nickel oxide.Appl. Phys. Lett.16, 40–43 (1970).
Kim, D. C. et al. Electrical observations of filamentary conductions for the resistive memory switching in NiO films.Appl. Phys. Lett.88, 202102 (2006).
Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition.J. Appl. Phys.98, 033715 (2005).
Baek, I. G. et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses.IEDM Tech. Digest, 587–590 (2005).
Jeong, D. S., Schroeder, H. & Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors.Electrochem. Solid-State Lett.10, G51–G53 (2007).
Simmons, J. G. & Verderber, R. R. New conduction and reversible memory phenomena in thin insulating films.Proc. R. Soc.Lond. A301, 77–102 (1967).
Ouyang, J. Y., Chu, C. W., Szmanda, C. R., Ma, L. P. & Yang, Y. Programmable polymer thin film and non-volatile memory device.Nature Mater.3, 918–922 (2004).
Bozano, L. D. et al. Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles.Adv. Funct. Mater.15, 1933–1939 (2005).
Guan, W. et al. Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide.J. Phys. D40, 2754–2758 (2007).
Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Interface resistance switching at a few nanometer thick perovskite manganite active layers.Appl. Phys. Lett.88, 232112 (2006).
Fujii, T. et al. Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3 .Appl. Phys. Lett.86, 012107 (2005).
Lee, D. et al. inProc. Non-Volatile Memory Technology Symposium (ed. Campbell, K.) 89–93 (IEEE, Piscataway, New Jersey, 2006).
Hovel, H. J. & Urgell, J. J. Switching and memory characteristics of ZnSe–Ge heterojunctions.J. Appl. Phys.42, 5076–5083 (1971).
Fors, R., Khartsev, S. I. & Grishin, A. M. Giant resistance switching in metal-insulator-manganite junctions: evidence for Mott transition.Phys. Rev. B71, 045305 (2005).
Kim, D. S., Kim, Y. H., Lee, C. E. & Kim, Y. T. Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: evidence for a Mott transition.Phys. Rev. B74, 174430 (2006).
Meijer, G. I. et al. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3.Phys. Rev. B72, 155102 (2005).
Rozenberg, M. J., Inoue, I. H. & Sanchez, M. J. Nonvolatile memory with multilevel switching: a basic model.Phys. Rev. Lett.92, 178302 (2004).
Rozenberg, M. J., Inoue, I. H. & Sanchez, M. J. Strong electron correlation effects in nonvolatile electronic memory devices.Appl. Phys. Lett.88, 033510 (2006).
Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar Switch.IBM Tech. Discl. Bull.13, 2161 (1971).
Kohlstedt, H., Pertsev, N. A., Contreras, J. R. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions.Phys. Rev. B72, 125341 (2005).
Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric.Science313, 181–183 (2006).
Waser, R.Nanoelectronics and Information Technology 2nd edn (Wiley-VCH, Weinheim, 2003).
Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems.Nature Mater.4, 805–818 (2005).
Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch.Nature433, 47–50 (2005).
Ercker, L.Treatise on Ores and Assaying (1547) (transl. Sisco, A. G. & Smith, C. S., Univ. Chicago, 1951), p. 177.
Faraday, M.Phil. Trans. R. Soc. Lond.123, 507–522 (1833).
Wagner, C. Physical chemistry of ionic crystals involving small concentrations of foreign substances.J. Phys. Chem.57, 738–742 (1953).
Hirose, Y. & Hirose, H. Polarity-dependent memory switching and behaviour of Ag dendrite in Ag-photodoped amorphous As2S3 films.J. Appl. Phys.47, 2767–2772 (1976).
Tamura, T. et al. Switching property of atomic switch controlled by solid electrochemical reaction.Jpn. J. Appl. Phys.45, L364–L366 (2006).
Kaeriyama, S. et al. A nonvolatile programmable solid-electrolyte nanometer switch.IEEE J. Solid-State Circuits USA40, 168–176 (2005).
Sakamoto, T. et al. A Ta2O5 solid-electrolyte switch with improved reliability.VLSI Technol. Digest Tech. Pap. (in the press).
Zheng-Wang et al. Resistive switching mechanism in ZnxCd1–xS nonvolatile memory devices.IEEE Electron Dev. Lett.28, 14–16 (2007).
Kozicki, M. N., Gopalan, C., Balakrishnan, M. & Mitkova, M. A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte.IEEE Trans. Nanotechnol.5, 535–544 (2006).
Schindler, C., Puthen Thermadam, S. C., Kozicki, R. & Waser, M. N. Bipolar and unipolar resistive switching in Cu-doped SiO2 .IEEE Trans. Electron Dev. (in the press).
van-der-Sluis, P. Non-volatile memory cells based on ZnxCd1–xS ferroelectric Schottky diodes.Appl. Phys. Lett.82, 4089–4091 (2003).
Kund, M. et al. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm.IEDM Tech. Digest, 754–757 (2005).
Dietrich, S. et al. A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control.IEEE J.Solid-State Circuits42, 839–845 (2007).
Xie, F. Q., Nittler, L., Obermair, C. & Schimmel, T. Gate-controlled atomic quantum switch.Phys. Rev. Lett.93, 128303 (2004).
Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch.Jpn. J. Appl. Phys.45, 3666–3668 (2006).
Wuttig, M. & Yamada, N. Phase change materials for rewriteable data storage.Nature Mater.6, 824–832 (2007).
Baiatu, T., Waser, R. & Hardtl, K. H. DC electrical degradation of perovskite-type titanates. III. A model of the mechanism.J. Am. Ceram. Soc.73, 1663–1673 (1990).
Watanabe, Y. et al. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals.Appl. Phys. Lett.78, 3738–3740 (2001).
Pinto, R. Filamentary switching and memory action in thin anodic oxides.Phys. Lett. A35, 155–156 (1971).
Beaulieu, R. P., Sulway, D. V. & Cox, C. D. The detection of current filaments in VO2 thin-film switches using the scanning electron microscope.Solid-State Electron.3, 428–429 (1973).
Ogimoto, Y., Tamia, Y., Kawasaki, M. & Tokura, Y. Resistance switching memory device with a nanoscale confined current path.Appl. Phys. Lett.90, 143515 (2007).
Rossel, C., Meijer, G. I., Bremaud, D. & Widmer, D. Electrical current distribution across a metal-insulator-metal structure during bistable switching.J. Appl. Phys.90, 2892–2898 (2001).
Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 .Nature Mater.5, 312–320 (2006).
Szot, K., Dittmann, R., Speier, W. & Waser, R. Nanoscale resistive switching.Phys. Status Solidi1, R86–R88 (2007).
Chen, X., Wu, N., Strozier, J. & Ignatiev, A. Spatially extended nature of resistive switching in perovskite oxide thin films.Appl. Phys. Lett.89, 063507 (2006).
Janousch, M. et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory.Adv. Mater.19, 2232–2235 (2007).
Pender, L. F. & Fleming, R. J. Memory switching in glow discharge polymerized thin films.J. Appl. Phys.46, 3426–3431 (1975).
Potember, R. S., Poehler, T. O. & Cowan, D. O. Electrical switching and memory phenomena in Cu-TCNQ thin films.Appl. Phys. Lett.34, 405–407 (1979).
Bandyopadhyay, A. & Pal, A. J. Large conductance switching and memory effects in organic molecules for data-storage applications.Appl. Phys. Lett.82, 1215–1217 (2003).
Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials.Adv. Mater.19, 1452–1463 (2007).
Karthauser, S. et al. Resistive switching of rose bengal devices: a molecular effect?J. Appl. Phys.100, 094504 (2006).
Colle, M., Buchel, M. & de-Leeuw, D. M. Switching and filamentary conduction in non-volatile organic memories.Org. Electron.7, 305–312 (2006).
Kever, T., Boettger, U., Schindler, Ch. & Waser, R. On the origin of bistable resistive switching in Cu:TCNQ.Appl. Phys. Lett.91, 083506 (2007).
Feringa, B. L.Molecular Switches (Wiley-VCH, Weinheim, 2001).
Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch.Science289, 1172–1175 (2000).
Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices.Nano Lett.4, 133–136 (2004).
Blackstock, J. J. et al. Internal structure of a molecular junction device: chemical reduction of PtO2 by Ti.J. Phys. Chem. C111, 16–20 (2007).
Li, Z. et al. Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment.Faraday Disc.131, 121–143 (2005).
Li, Z., Pobelov, I., Han, B., Wandlowski, T., Blaszczyk, A. & Mayor, M. Conductance of redox-active single molecular junctions: an electrochemical approach.Nanotechnology18, 1–8 (2007).
Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction.Small2, 973–977 (2006).
Wu, W. et al. One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography.Appl. Phys. A80, 1173–1178 (2005).
Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre.Nature445, 14–17 (2007).
Lee, M. J. et al. A low-temperature grown oxide diode as a new switch element for high-density, nonvolatile memories.Adv. Mater.19, 73–76 (2007).
Mustafa, J. & Waser, R. A novel reference scheme for reading passive resistive crossbar memories.IEEE Trans. Nanotechnol.5, 687–691 (2006).
Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: opportunities for nanotechnology.Science280, 1716–1721 (1998).
Snider, G., Kuekes, P., Hogg, T. & Williams, R. S. Nanoelectronic architectures.Appl. Phys. A80, 1183–1195 (2005).
DeHon, A., Randy Huang, & Wawrzynek, J. Stochastic spatial routing for reconfigurable networks.Microprocessors Microsyst.30, 301–318 (2006).
Likharev, K. K. & Strukov, D. B. inIntroducing Molecular Electronics. Lecture Notes in Physics Vol.680 (eds Cuniberti, G., Richter, K. & Fagas, G.) 447–477 (Springer, Berlin, 2006).
Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up.Nature Mater.6, 841–850 (2006).
Ignatiev, A. et al. Resistance switching in perovskite thin films.Phys. Stat. Sol. B243, 2089–2097 (2006).
Honigschmid, H. et al. A non-volatile 2Mbit CBRAM memory core featuring advanced read and program control.VLSI Circuits Symp. Tech. Digest, 110–11 (2006).
Zhirnov, V. V., Cavin -R-K-III, Hutchby, J. A. & Bourianoff, G. I. Limits to binary logic switch scaling—a gedanken model.Proc. IEEE USA91, 1934–1939 (2003).
Cavin, R. K., Zhirnov, V. V., Herr, D. J. C., Alba Avila, & Hutchby, J. Research directions and challenges in nanoelectronics.J.Nanoparticle Res.8, 841–858 (2006).
Snider, G. S. & Williams, R. S. Nano/CMOS architectures using a field-programmable nanowire interconnect.Nanotechnology18, 1–11 (2007).
Acknowledgements
We thank J. G. Bednorz (IBM Research, Zurich), U-In Chung, I. G. Baek and S. O. Park (Samsung Electronics), Y. Zhang (Intel, Santa Clara), R. Bruchhaus (Qimonda, Munich), V. Zhirnov (SRC), and K. Szot and R. Dittmann (Research Center Jülich) for valuable comments.
Author information
Authors and Affiliations
Institut für Werkstoffe der Elektrotechnik 2, RWTH Aachen University, Aachen, 52056, Germany
Rainer Waser
Institut für Festkörperforschung/CNI—Center of Nanoelectronics for Information Technology, Forschungszentrum Jülich, 52425, Jülich, Germany
Rainer Waser
Nanomaterials Laboratories, National Institute for Material Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan
Masakazu Aono
ICORP/Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012, Saitama, Japan
Masakazu Aono
- Rainer Waser
Search author on:PubMed Google Scholar
- Masakazu Aono
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toRainer Waser.
Rights and permissions
About this article
Cite this article
Waser, R., Aono, M. Nanoionics-based resistive switching memories.Nature Mater6, 833–840 (2007). https://doi.org/10.1038/nmat2023
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
3D-integrated multilayered physical reservoir array for learning and forecasting time-series information
- Sanghyeon Choi
- Jaeho Shin
- Gunuk Wang
Nature Communications (2024)
Tuning the superconducting performance of YBa2Cu3O7−δ films through field-induced oxygen doping
- Jordi Alcalà
- Alejandro Fernández-Rodríguez
- Anna Palau
Scientific Reports (2024)
Sol–gel derived amorphous LaNbOx films for forming-free RRAM applications
- Jing-Han Wang
- I.-Chun Ling
- Cheng-Liang Huang
Applied Physics A (2024)
Composite Nanoarchitectonics Towards Method for Everything in Materials Science
- Katsuhiko Ariga
Journal of Inorganic and Organometallic Polymers and Materials (2024)
Superior artificial synaptic properties applicable to neuromorphic computing system in HfOx-based resistive memory with high recognition rates
- Hyun Kyu Seo
- Su Yeon Lee
- Min Kyu Yang
Discover Nano (2023)


