Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Medicine
  • Letter
  • Published:

Host S-nitrosylation inhibits clostridial small molecule–activated glucosylating toxins

Nature Medicinevolume 17pages1136–1141 (2011)Cite this article

Subjects

Abstract

The global prevalence of severeClostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins1,2,3,4. Virulence is dependent on the autoactivation of a toxin cysteine protease5,6,7,8,9, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP6)10,11,12,13,14,15,16,17. Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins18,19. Here we show thatC. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP6- and inositol pyrophosphate (InsP7)-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP6 enhanced the therapeutic actions of oral S-nitrosothiols in mouse models ofC. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:C. difficile toxins are S-nitrosylatedin vivo.
Figure 2: Toxin S-nitrosylation is allosterically regulated by inositolphosphate.
Figure 3: A catalytic-site motif for S-nitrosylation.
Figure 4: GSNO-based therapy forC. difficile infection.

Similar content being viewed by others

References

  1. Chen, X. et al. A mouse model ofClostridium difficile–associated disease.Gastroenterology135, 1984–1992 (2008).

    Article PubMed  Google Scholar 

  2. Savidge, T.C. et al.Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine.Gastroenterology125, 413–420 (2003).

    Article CAS PubMed  Google Scholar 

  3. Lyras, D. et al. Toxin B is essential for virulence ofClostridium difficile.Nature458, 1176–1179 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  4. Kuehne, S.A. et al. The role of toxin A and toxin B inClostridium difficile infection.Nature467, 711–713 (2010).

    Article CAS PubMed  Google Scholar 

  5. Satchell, K.J. MARTX, multifunctional autoprocessing repeats-in-toxin toxins.Infect. Immun.75, 5079–5084 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Sheahan, K.L., Cordero, C.L. & Fullner Satchell, K.J. Autoprocessing of theVibrio cholerae RTX toxin by the cysteine protease domain.EMBO J.26, 2552–2561 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Egerer, M. et al. Auto-catalytic cleavage ofClostridium difficile toxins A and B depends on cysteine protease activity.J. Biol. Chem.282, 25314–25321 (2007).

    Article CAS PubMed  Google Scholar 

  8. Pei, J., Lupardus, P.J., Garcia, K.C. & Grishin, N.V. CPDadh: a new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins.Protein Sci.18, 856–862 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  9. Puri, A.W. et al. Rational design of inhibitors and activity-based probes targetingClostridium difficile virulence factor TcdB.Chem. Biol.17, 1201–1211 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Reineke, J. et al. Autocatalytic cleavage ofClostridium difficile toxin B.Nature446, 415–419 (2007).

    Article CAS PubMed  Google Scholar 

  11. Prochazkova, K. & Fullner Satchell, K.J. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of theVibrio cholerae multifunctional autoprocessing RTX toxin.J. Biol. Chem.283, 23656–23664 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Lupardus, P.J., Shen, A., Bogyo, M. & Garcia, K.C. Small molecule–induced allosteric activation of theVibrio cholera RTX cysteine protease domain.Science322, 265–268 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Egerer, M., Giesemann, T., Herrmann, C. & Aktories, K. Auto-catalytic processing ofClostridium difficile toxin B-binding of inositol hexakisphosphate.J. Biol. Chem.284, 3389–3395 (2009).

    Article CAS PubMed  Google Scholar 

  14. Prochazkova, K. et al. Structural and molecular mechanism for autoprocessing of MARTX toxin ofVibrio cholera at multiple sites.J. Biol. Chem.284, 26557–26568 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  15. Pruitt, R.N., Chagot, B., Cover, M., Chazin, W.J. & Lacy, D.B. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing inClostridium difficile toxin A.J. Biol. Chem.284, 21934–21940 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Kreimeyer, I. et al. Autoproteolytic cleavage mediates cytotoxicity ofClostridium difficile toxin A.Naunyn Schmiedebergs Arch. Pharmacol.383, 253–262 (2011).

    Article CAS PubMed  Google Scholar 

  17. Guttenberg, G. et al. Clostridal glucosylating toxins: inositol hexakisphosphate-dependent processing ofClosterium sordellii lethal toxin andClostridium novyi α-toxin.J. Biol. Chem.286, 14779–14786 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Benhar, M., Forrester, M.T. & Stamler, J.S. Protein denitrosylation: enzymatic mechanisms and cellular functions.Nat. Rev. Mol. Cell Biol.10, 721–732 (2009).

    Article CAS PubMed  Google Scholar 

  19. Foster, M.W., Hess, D.T. & Stamler, J.S. S-nitrosylation in health and disease-a current perspective.Trends Mol. Med.15, 391–404 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Qiu, B., Pothoulakis, C., Castagliuolo, I., Nikulasson, Z. & LaMont, J.T. Nitric oxide inhibits rat intestinal secretion byClostridium difficile toxin A but notVibrio cholerae enterotoxin.Gastroenterology111, 409–418 (1996).

    Article CAS PubMed  Google Scholar 

  21. Ng, J. et al.Clostridium difficile toxin–induced inflammation and intestinal injury are mediated by the inflammasome.Gastroenterology139, 542–552 (2010).

    Article CAS PubMed  Google Scholar 

  22. Que, L.G. et al. Protection from experimental asthma by an endogenous bronchodilator.Science308, 1618–1621 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Savidge, T.C. et al. Enteric glia regulate intestinal barrier function and inflammation via release ofS-nitrosoglutathione.Gastroenterology132, 1344–1358 (2007).

    Article CAS PubMed  Google Scholar 

  24. Hausladen, A. et al. Assessment of nitric oxide signals by triodide chemiluminescence.Proc. Natl. Acad. Sci. USA104, 2157–2162 (2007).

    Article CAS PubMed  Google Scholar 

  25. Wiktorowicz, J. et al. Quantification of cysteinyl S-nitrosylation by fluorescence in unbiased proteomic studies.Biochemistry50, 5601–5614 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Jaffrey, S.R. & Snyder, S.H. The biotin-switch method for the detection of S-nitrosylated proteins.Sci. STKE2001, pl1 (2001).

    CAS PubMed  Google Scholar 

  27. Gow, A.J. et al. Basal and stimulated protein S-nitrosylation in multiple cell types and tissues.J. Biol. Chem.277, 9637–9640 (2002).

    Article CAS PubMed  Google Scholar 

  28. Popoff, M.R. & Geny, B. Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins.Biochim. Biophys. Acta88, 797–812 (2009).

    Article  Google Scholar 

  29. Kim, S.F., Huri, D.A. & Snyder, S.H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2.Science310, 1966–1970 (2005).

    Article CAS PubMed  Google Scholar 

  30. He, X. et al. An ultrasensitive rapid immunocytotoxicity assay for detectingClostridium difficile toxins.J. Microbiol. Methods78, 97–100 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Marino, S.M. & Gladyshev, V.N. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation.J. Mol. Biol.395, 844–859 (2010).

    Article CAS PubMed  Google Scholar 

  32. Eichinger, A. et al. Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold.EMBO J.18, 5453–5462 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Chakraborty, A. et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain.Cell143, 897–910 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Tang, H.Y. & Speicher, D.W. Identification of alternative products and optimization of 2-nitro-5-thiocyanatobenzoic acid cyanylation and cleavage at cysteine residues.Anal. Biochem.334, 48–61 (2004).

    Article CAS PubMed  Google Scholar 

  35. McMahon, T.J. et al. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin.J. Biol. Chem.275, 16738–16745 (2000).

    Article CAS PubMed  Google Scholar 

  36. Matsumoto, A., Comatas, K.E., Liu, L. & Stamler, J.S. Screening for nitric oxide–dependent protein-protein interactions.Science301, 657–661 (2003).

    Article CAS PubMed  Google Scholar 

  37. Benhar, M., Forrester, M.T., Hess, D.T. & Stamler, J.S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins.Science320, 1050–1054 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Cui, Q. & Karplus, M. Allostery and cooperativity revisited.Protein Sci.17, 1295–1307 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Saura, M. et al. An antiviral mechanism of nitric oxide: Inhibition of a viral protease.Immunity10, 21–28 (1999).

    Article CAS PubMed  Google Scholar 

  40. Eu, J.P., Sun, J., Xu, L., Stamler, J.S. & Meissner, G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions.Cell102, 499–509 (2000).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Eli & Edith Broad Foundation, the John S. Dunn Gulf Coast Consortium for Chemical Genomics Robert A. Welch Collaborative Grant Program, the Howard Hughes Medical Institute and grants from the US National Institutes of Health National Institute of Allergy and Infectious Diseases (R01AI088748, N01AI30050), National Institute of Diabetes and Digestive and Kidney Diseases (R01DK084509, K01DK076549; R21-DK078032-01), National Heart, Lung, and Blood Institute (R01-HL059130, R01-HL091876, R01-HL095463, P01-HL075443-06A, NO1-HV-00245) and 1UL1RR029876-01. We thank D. Powell, S. Weinman, C.S. Schein and G. Prestwich for their critiques.

Author information

Authors and Affiliations

  1. Department of Gastroenterology & Hepatology, University of Texas Medical Branch, Galveston, Texas, USA

    Tor C Savidge, Petri Urvil, Kausar Ali, Aproteem Choudhury, Vinay Acharya & Irina Pinchuk

  2. Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA

    Numan Oezguen, John E Wiktorowicz & Werner Braun

  3. Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA

    Alfredo G Torres

  4. National Heart, Lung and Blood Institute Proteomics Center, University of Texas Medical Branch, Galveston, Texas, USA

    Robert D English & John E Wiktorowicz

  5. Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA

    Michael Loeffelholz

  6. Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, USA

    Raj Kumar

  7. Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA

    Lianfa Shi, Weijia Nie & Hanping Feng

  8. Institute for Transformative Molecular Medicine, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA

    Bo Herman, Alfred Hausladen & Jonathan S Stamler

  9. Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA

    Bo Herman, Alfred Hausladen & Jonathan S Stamler

  10. Division of Digestive Diseases, University of California–Los Angeles, Los Angeles, California, USA

    Charalabos Pothoulakis

Authors
  1. Tor C Savidge
  2. Petri Urvil
  3. Numan Oezguen
  4. Kausar Ali
  5. Aproteem Choudhury
  6. Vinay Acharya
  7. Irina Pinchuk
  8. Alfredo G Torres
  9. Robert D English
  10. John E Wiktorowicz
  11. Michael Loeffelholz
  12. Raj Kumar
  13. Lianfa Shi
  14. Weijia Nie
  15. Werner Braun
  16. Bo Herman
  17. Alfred Hausladen
  18. Hanping Feng
  19. Jonathan S Stamler
  20. Charalabos Pothoulakis

Contributions

T.C.S. designed the study, performed InsP6, GSNO and cytotoxicity assays, BIACORE analysis, and wrote the paper; P.U. performed the toxin S-nitrosylation and InsP6 binding studies; N.O. and W.B. performed the toxin structural modeling and molecular docking simulations; I.P. performed the SNO immunofluorescence; K.A., A.C. and V.A. performed toxin autocleavage, InsP7 phosphorylation and UDP-glucosylation assays; A.G.T. performed animal toxin studies; R.D.E. performed the mass spectrometry; J.E.W. performed the cysteine saturation labeling studies; M.L. provided clinical specimens; R.K. performed the CD spectral analysis; L.S., W.N. and H.F. developed the toxin mutants, performed InsP6 cleavage and stool cytotoxicity assays and animals studies; B.H., A.H. and J.S.S. performed or oversaw the measurements of GSNO and SNO proteins; J.S.S. assisted with the study design and writing of the paper; C.P. prepared holotoxins, performed animal toxin studies and assisted with study design and manuscript editing.

Corresponding author

Correspondence toTor C Savidge.

Ethics declarations

Competing interests

C.P. is a paid consultant with Merck and Optimer Pharmaceuticals and a paid speaker for the Postgraduate Institute for Medicine. J.S.S. has a small financial interest in N30 Pharma, Adamas Pharma, Vindica LLC, SabrePharm and LifeHealth, early-stage companies in development of nitric oxide–related therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Methods (PDF 1811 kb)

Rights and permissions

About this article

Cite this article

Savidge, T., Urvil, P., Oezguen, N.et al. Host S-nitrosylation inhibits clostridial small molecule–activated glucosylating toxins.Nat Med17, 1136–1141 (2011). https://doi.org/10.1038/nm.2405

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing Microbiology

Sign up for theNature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: Microbiology

[8]ページ先頭

©2009-2025 Movatter.jp