- Article
- Published:
Tetraspan microdomains distinct from lipid rafts enrich select peptide–MHC class II complexes
- H. Kropshofer1,2,
- S. Spindeldreher1,
- T. A. Röhn1,
- N. Platania1,
- C. Grygar1,
- N. Daniel1,
- A. Wölpl3,
- H. Langen4,
- V. Horejsi5 &
- …
- A. B. Vogt1,2
Nature Immunologyvolume 3, pages61–68 (2002)Cite this article
956Accesses
193Citations
1Altmetric
Abstract
Complexes of peptide and major histocompatibility complex (MHC) class II are expressed on the surface of antigen-presenting cells but their molecular organization is unknown. Here we show that subsets of MHC class II molecules localize to membrane microdomains together with tetraspan proteins, the peptide editor HLA-DM and the costimulator CD86. Tetraspan microdomains differ from other membrane areas such as lipid rafts, as they enrich MHC class II molecules carrying a selected set of peptide antigens. Antigen-presenting cells deficient in tetraspan microdomains have a reduced capacity to activate CD4+ T cells. Thus, the organization of uniformly loaded peptide–MHC class II complexes in tetraspan domains may be a very early event that determines both the composition of the immunological synapse and the quality of the subsequent T helper cell response.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others

Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors

Membrane organization by tetraspanins and galectins shapes lymphocyte function
References
Bromley, S. K. et al. The immunological synapse.Annu. Rev. Immunol.19, 375–396 (2001).
Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells.Nature395, 82–86 (1998).
Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts.Cell94, 667–677 (1998).
Schafer, P. H. & Pierce, S. K. Evidence for dimers of MHC class II molecules in B lymphocytes and their role in low affinity T cell responses.Immunity1, 699–707 (1994).
Roucard, C., Garban, F., Mooney, N. A., Charron, D. J. & Ericson, M. L. Conformation of human leukocyte antigen class II molecules. Evidence for superdimers and empty molecules on human antigen presenting cells.J. Biol. Chem.271, 13993–14000 (1996).
Cherry, R. et al. Detection of dimers of dimers of human leucocyte antigen (HLA)-DR on the surface of living cells by single-particle fluorescence imaging.J. Cell.Biol.140, 71–79 (1998).
Lindstedt, R., Monk, N., Lombardi, C. & Lechler, R. Amino acid substitutions in the putative MHC class II “dimer of dimers” interface inhibit CD4+ T cell activation.J. Immunol.166, 800–808 (2001).
Totterman, T. H. et al. Chronic B-lymphocytic leukemia—expression of B cell activation markers in relation to activity of the disease.Nouv. Rev. Fr. Hematol.30, 279–281 (1988).
Slack, J. L., Armitage, R. J., Ziegler, S. F., Dower, S. K. & Gruss, H. J. Molecular characterization of the pan-B cell antigen CDw78 as a MHC class II molecule by direct expression cloning of the transcription factor CIITA.Int. Immunol.7, 1087–1092 (1995).
Rasmussen, A.-M. et al. CDw78—a determinant on a major histocompatibility complex class II subpopulation that can be induced to associate with the cytoskeleton.Eur. J. Immunol.27, 3206–3216 (1997).
Angelisova, P., Hilgert, I. & Horejsi, V. Association of four antigens of the tetraspan family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins.Immunogenetics39, 249–256 (1994).
Szollosi, J., Horejsi, V., Bene, L., Angelisova, P. & Damjanovich, S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY.J. Immunol.157, 2939–2946 (1996).
Rubinstein, E. et al. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins.Eur. J. Immunol.26, 2657–2665 (1996).
Drbal, K. et al. The nature of the subset of MHC class II molecules carrying the CDw78 epitopes.Int. Immunol.11, 491–498 (1999).
Anderson, H. A., Hiltbold, E. M. & Roche, P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation.Nature Immunol.1, 156–162 (2000).
Simons, K. & Ikonen, E. Functional rafts in cell membranes.Nature387, 569–572 (1997).
Brown, D. A. & London, E. Functions of lipid rafts in biological membranes.Annu. Rev. Cell. Dev. Biol.14, 111–136 (1998).
Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalianJ. Cell Biol.148, 997–1008 (2000).
Huby, R. D, D earman, R. J. & Kimber, I. Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts.J. Biol. Chem.274, 22591–22596 (1999).
Huby, R., Chowdhury, F. & Lombardi, G. Rafts for antigen presentation?Nature Immunol.2, 3 (2001).
Vogt, A. B. & Kropshofer, H. Differential engagement of MHC class II molecules in tetraspan networks and lipid rafts.Immunologist8, 110–113 (2000).
Claas, C., Stipp, C. S. & Hemler, M. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts.J. Biol. Chem.276, 7974–7984 (2001).
Resh, M. D. Myristylation and palmitylation of Src family members: the fats of the matter.Cell76, 411–413 (1994).
Chicz, R. M. et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles.J. Exp. Med.178, 27–47 (1993).
Woelpl, A. et al. Human monoclonal antibody with T-cell-like specificity recognizes MHC class I self-peptide presented by HLA-DR1 on activated cells.Tissue Antigens51, 258–269 (1998).
Ghosh, P., Amaya, M., Mellins, E. & Wiley, D. C. The structure of HLA-DR3 complexed with CLIP, an intermediate in peptide loading.Nature387, 457–462 (1995).
Chervonsky, A. V. et al. Subtle conformational changes induced in major histocompatibility complex class II molecules by binding peptides.Proc. Natl. Acad. Sci. USA95, 10094–10099 (1998).
Hammond, C. et al. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules.J. Immunol.161, 3282–3291 (1998).
Kropshofer, H. et al. Editing of the HLA-DR peptide repertoire by HLA-DM.EMBO J.15, 6144–6154 (1996).
Katz, J. F., Stebbins, C., Appella, E. & Sant, A. J. Invariant chain and DM edit self-peptide presentation by major histocompatibility complex (MHC) class II molecules.J. Exp. Med.184, 1747–1753 (1996).
Kropshofer, H., Hämmerling, G. J. & Vogt, A. B. How HLA-DM edits the MHC class II peptide repertoire: survival of the fittest?Immunol. Today18, 77–82 (1997).
Arndt, S. O. et al. Functional HLA-DM on the surface of B cells and immature dendritic cells.EMBO J.19, 1241–1251 (2000).
Kropshofer, H. et al. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH.Immunity6, 293–302 (1997).
Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. & van der Ende, A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol.J . Biol. Chem.268, 3150–3155 (1993).
Ilangumaran, S. & Hoessli, D. C. Effects of cholesterol depletion by cycodextrin on the sphingolipid microdomains of the plasma membrane.Biochem. J.335, 433–440 (1998).
Denzin, L. K., Robbins, N. F., Carboy-Newcomb, C. & Cresswell, P. Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells.Immunity1, 595–606 (1994).
Turley, S. J. et al. Transport of peptide–MHC class II complexes in developing dendritic cells.Science288, 522–527 (2000).
Boll, W. et al. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes.EMBO J.15, 5789–5795 (1996).
van Lith, M. et al. Regulation of MHC class II antigen presentation by sorting of recycling HLA-DM/DO and class II within the multivesicular body.J. Immunol.167, 884–892 (2001).
Kropshofer H. et al. A role for HLA-DO as a co-chaperone of HLA-DM in peptide loading of MHC class II molecules.EMBO J.17, 2971–2981 (1998).
Anderson, H., Hiltbold, E. & Roche, P. Response to “Rafts for antigen presentation?”Nature Immunol.2, 3 (2001).
Jardetzky, T. S. et al. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides.Proc. Natl. Acd. Sci. USA93, 734–738 (1996).
Lampson, L. A. & Levy, R. Two populations of Ia-like molecules on a human B cell line.J. Immunol.125, 293–299 (1980).
Adams, T. E., Bodmer, J. G. & Bodmer, W. F. Production and characterization of monoclonal antibodies recognizing the α-chain subunits of human Ia alloantigens.Immunology50, 613–624 (1983).
Fukudome, K. et al. Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-1)-induced syncytium formation: altered glycosylation of C33 antigen in HTLV-1-positive T cells.J. Virol.66, 1394–1401 (1992).
Maier, B. et al. Multiple cross-reactive self-ligands toBorrelia burgdorferi-specific HLA-DR4-restricted T cells.Eur. J. Immunol.30, 448–457 (2000).
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor necrosis factor α.J. Exp. Med.179, 1109–1118 (1994).
Kropshofer, H., Vogt, A. B., Stern, L. J. & Hämmerling, G. J. Self-release of CLIP in peptide loading of HLA-DR molecules.Science270, 1357–1359 (1995).
Smith, M.-H. et al. Baculoviral expressed HLA class I heavy chains used to screen a synthetic peptide library for allele-specific peptide-binding motifs.Mol. Immunol.16, 1033–1043 (1998).
Acknowledgements
We thank T. Kamradt for the T cell hybridomas; X. D. Nguyen and H. Klüter for the HLA-typed blood samples; D. Roeder for help with mass spectrometry analysis; D. Avila for peptide synthesis: and T. Harder and E. Palmer for helpful discussions. Supported by project A026 of the Czech Ministry of Education (V. H.). The Basel Institute was founded and supported by Hoffman-La Roche, Ltd., Basel.
Author information
Authors and Affiliations
Basel Institute for Immunology, Basel, 4005, Switzerland
H. Kropshofer, S. Spindeldreher, T. A. Röhn, N. Platania, C. Grygar, N. Daniel & A. B. Vogt
Roche Center for Medical Genomics, Basel, 4070, Switzerland
H. Kropshofer & A. B. Vogt
German Red Cross, Blood Transfusion Service, Ulm, 89081, Germany
A. Wölpl
F. Hoffmann-La Roche Ltd., Pharmaceutical Research, Basel, 4070, Switzerland
H. Langen
Institute of Molecular Genetics, AS CR, Prague, 14220, Czech Republic
V. Horejsi
- H. Kropshofer
You can also search for this author inPubMed Google Scholar
- S. Spindeldreher
You can also search for this author inPubMed Google Scholar
- T. A. Röhn
You can also search for this author inPubMed Google Scholar
- N. Platania
You can also search for this author inPubMed Google Scholar
- C. Grygar
You can also search for this author inPubMed Google Scholar
- N. Daniel
You can also search for this author inPubMed Google Scholar
- A. Wölpl
You can also search for this author inPubMed Google Scholar
- H. Langen
You can also search for this author inPubMed Google Scholar
- V. Horejsi
You can also search for this author inPubMed Google Scholar
- A. B. Vogt
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toH. Kropshofer.
Rights and permissions
About this article
Cite this article
Kropshofer, H., Spindeldreher, S., Röhn, T.et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide–MHC class II complexes.Nat Immunol3, 61–68 (2002). https://doi.org/10.1038/ni750
Received:
Accepted:
Published:
Issue Date:
This article is cited by
The tetraspanin CD151 marks a unique population of activated human T cells
- Mildred D. Perez
- Lillian Seu
- Olaf Kutsch
Scientific Reports (2020)
Tetraspanin CD53: an overlooked regulator of immune cell function
- V. E. Dunlock
Medical Microbiology and Immunology (2020)
Molecular cloning, expression pattern, and phylogenetic analysis of a tetraspanin CD82-like molecule in lamprey Lampetra japonica
- Xiaoping Zhang
- Xueying Song
- Qingwei Li
Development Genes and Evolution (2016)
Molecular insights into a tetraspanin in the hydatid tapeworm Echinococcus granulosus
- Dandan Hu
- Xingju Song
- Guangyou Yang
Parasites & Vectors (2015)
The ins and outs of MHC class II-mediated antigen processing and presentation
- Paul A. Roche
- Kazuyuki Furuta
Nature Reviews Immunology (2015)