Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Immunology
  • Article
  • Published:

Tetraspan microdomains distinct from lipid rafts enrich select peptide–MHC class II complexes

Nature Immunologyvolume 3pages61–68 (2002)Cite this article

Abstract

Complexes of peptide and major histocompatibility complex (MHC) class II are expressed on the surface of antigen-presenting cells but their molecular organization is unknown. Here we show that subsets of MHC class II molecules localize to membrane microdomains together with tetraspan proteins, the peptide editor HLA-DM and the costimulator CD86. Tetraspan microdomains differ from other membrane areas such as lipid rafts, as they enrich MHC class II molecules carrying a selected set of peptide antigens. Antigen-presenting cells deficient in tetraspan microdomains have a reduced capacity to activate CD4+ T cells. Thus, the organization of uniformly loaded peptide–MHC class II complexes in tetraspan domains may be a very early event that determines both the composition of the immunological synapse and the quality of the subsequent T helper cell response.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific peptide–MHC class II complexes accumulate in CDw78 microdomains.
Figure 2: CDw78 microdomains are distinct from TX-100 insoluble lipid rafts.
Figure 3: Peptide sequence determines segregation of peptide–MHC class II complexes into CDw78 microdomains.
Figure 4: The peptide editor DM is localized in CDw78 microdomains.
Figure 5: CDw78 microdomains of Jutthom B cells comprise A2-DR1 complexes localized in internal compartments and on the cell surface.
Figure 6: Developing DCs up-regulate CDw78 microdomains that contain the costimulatory molecule CD86.
Figure 7: CDw78 microdomains are crucial for T cell activation.

Similar content being viewed by others

References

  1. Bromley, S. K. et al. The immunological synapse.Annu. Rev. Immunol.19, 375–396 (2001).

    Article CAS  Google Scholar 

  2. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells.Nature395, 82–86 (1998).

    Article CAS  Google Scholar 

  3. Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts.Cell94, 667–677 (1998).

    Article CAS  Google Scholar 

  4. Schafer, P. H. & Pierce, S. K. Evidence for dimers of MHC class II molecules in B lymphocytes and their role in low affinity T cell responses.Immunity1, 699–707 (1994).

    Article CAS  Google Scholar 

  5. Roucard, C., Garban, F., Mooney, N. A., Charron, D. J. & Ericson, M. L. Conformation of human leukocyte antigen class II molecules. Evidence for superdimers and empty molecules on human antigen presenting cells.J. Biol. Chem.271, 13993–14000 (1996).

    Article CAS  Google Scholar 

  6. Cherry, R. et al. Detection of dimers of dimers of human leucocyte antigen (HLA)-DR on the surface of living cells by single-particle fluorescence imaging.J. Cell.Biol.140, 71–79 (1998).

    Article CAS  Google Scholar 

  7. Lindstedt, R., Monk, N., Lombardi, C. & Lechler, R. Amino acid substitutions in the putative MHC class II “dimer of dimers” interface inhibit CD4+ T cell activation.J. Immunol.166, 800–808 (2001).

    Article CAS  Google Scholar 

  8. Totterman, T. H. et al. Chronic B-lymphocytic leukemia—expression of B cell activation markers in relation to activity of the disease.Nouv. Rev. Fr. Hematol.30, 279–281 (1988).

    CAS PubMed  Google Scholar 

  9. Slack, J. L., Armitage, R. J., Ziegler, S. F., Dower, S. K. & Gruss, H. J. Molecular characterization of the pan-B cell antigen CDw78 as a MHC class II molecule by direct expression cloning of the transcription factor CIITA.Int. Immunol.7, 1087–1092 (1995).

    Article CAS  Google Scholar 

  10. Rasmussen, A.-M. et al. CDw78—a determinant on a major histocompatibility complex class II subpopulation that can be induced to associate with the cytoskeleton.Eur. J. Immunol.27, 3206–3216 (1997).

    Article CAS  Google Scholar 

  11. Angelisova, P., Hilgert, I. & Horejsi, V. Association of four antigens of the tetraspan family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins.Immunogenetics39, 249–256 (1994).

    Article CAS  Google Scholar 

  12. Szollosi, J., Horejsi, V., Bene, L., Angelisova, P. & Damjanovich, S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY.J. Immunol.157, 2939–2946 (1996).

    CAS PubMed  Google Scholar 

  13. Rubinstein, E. et al. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins.Eur. J. Immunol.26, 2657–2665 (1996).

    Article CAS  Google Scholar 

  14. Drbal, K. et al. The nature of the subset of MHC class II molecules carrying the CDw78 epitopes.Int. Immunol.11, 491–498 (1999).

    Article CAS  Google Scholar 

  15. Anderson, H. A., Hiltbold, E. M. & Roche, P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation.Nature Immunol.1, 156–162 (2000).

    Article CAS  Google Scholar 

  16. Simons, K. & Ikonen, E. Functional rafts in cell membranes.Nature387, 569–572 (1997).

    Article CAS  Google Scholar 

  17. Brown, D. A. & London, E. Functions of lipid rafts in biological membranes.Annu. Rev. Cell. Dev. Biol.14, 111–136 (1998).

    Article CAS  Google Scholar 

  18. Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalianJ. Cell Biol.148, 997–1008 (2000).

    Article CAS  Google Scholar 

  19. Huby, R. D, D earman, R. J. & Kimber, I. Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts.J. Biol. Chem.274, 22591–22596 (1999).

    Article CAS  Google Scholar 

  20. Huby, R., Chowdhury, F. & Lombardi, G. Rafts for antigen presentation?Nature Immunol.2, 3 (2001).

    Article CAS  Google Scholar 

  21. Vogt, A. B. & Kropshofer, H. Differential engagement of MHC class II molecules in tetraspan networks and lipid rafts.Immunologist8, 110–113 (2000).

    CAS  Google Scholar 

  22. Claas, C., Stipp, C. S. & Hemler, M. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts.J. Biol. Chem.276, 7974–7984 (2001).

    Article CAS  Google Scholar 

  23. Resh, M. D. Myristylation and palmitylation of Src family members: the fats of the matter.Cell76, 411–413 (1994).

    Article CAS  Google Scholar 

  24. Chicz, R. M. et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles.J. Exp. Med.178, 27–47 (1993).

    Article CAS  Google Scholar 

  25. Woelpl, A. et al. Human monoclonal antibody with T-cell-like specificity recognizes MHC class I self-peptide presented by HLA-DR1 on activated cells.Tissue Antigens51, 258–269 (1998).

    Article  Google Scholar 

  26. Ghosh, P., Amaya, M., Mellins, E. & Wiley, D. C. The structure of HLA-DR3 complexed with CLIP, an intermediate in peptide loading.Nature387, 457–462 (1995).

    Article  Google Scholar 

  27. Chervonsky, A. V. et al. Subtle conformational changes induced in major histocompatibility complex class II molecules by binding peptides.Proc. Natl. Acad. Sci. USA95, 10094–10099 (1998).

    Article CAS  Google Scholar 

  28. Hammond, C. et al. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules.J. Immunol.161, 3282–3291 (1998).

    CAS PubMed  Google Scholar 

  29. Kropshofer, H. et al. Editing of the HLA-DR peptide repertoire by HLA-DM.EMBO J.15, 6144–6154 (1996).

    Article CAS  Google Scholar 

  30. Katz, J. F., Stebbins, C., Appella, E. & Sant, A. J. Invariant chain and DM edit self-peptide presentation by major histocompatibility complex (MHC) class II molecules.J. Exp. Med.184, 1747–1753 (1996).

    Article CAS  Google Scholar 

  31. Kropshofer, H., Hämmerling, G. J. & Vogt, A. B. How HLA-DM edits the MHC class II peptide repertoire: survival of the fittest?Immunol. Today18, 77–82 (1997).

    Article CAS  Google Scholar 

  32. Arndt, S. O. et al. Functional HLA-DM on the surface of B cells and immature dendritic cells.EMBO J.19, 1241–1251 (2000).

    Article CAS  Google Scholar 

  33. Kropshofer, H. et al. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH.Immunity6, 293–302 (1997).

    Article CAS  Google Scholar 

  34. Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. & van der Ende, A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol.J . Biol. Chem.268, 3150–3155 (1993).

    CAS PubMed  Google Scholar 

  35. Ilangumaran, S. & Hoessli, D. C. Effects of cholesterol depletion by cycodextrin on the sphingolipid microdomains of the plasma membrane.Biochem. J.335, 433–440 (1998).

    Article CAS  Google Scholar 

  36. Denzin, L. K., Robbins, N. F., Carboy-Newcomb, C. & Cresswell, P. Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells.Immunity1, 595–606 (1994).

    Article CAS  Google Scholar 

  37. Turley, S. J. et al. Transport of peptide–MHC class II complexes in developing dendritic cells.Science288, 522–527 (2000).

    Article CAS  Google Scholar 

  38. Boll, W. et al. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes.EMBO J.15, 5789–5795 (1996).

    Article CAS  Google Scholar 

  39. van Lith, M. et al. Regulation of MHC class II antigen presentation by sorting of recycling HLA-DM/DO and class II within the multivesicular body.J. Immunol.167, 884–892 (2001).

    Article CAS  Google Scholar 

  40. Kropshofer H. et al. A role for HLA-DO as a co-chaperone of HLA-DM in peptide loading of MHC class II molecules.EMBO J.17, 2971–2981 (1998).

    Article CAS  Google Scholar 

  41. Anderson, H., Hiltbold, E. & Roche, P. Response to “Rafts for antigen presentation?”Nature Immunol.2, 3 (2001).

    Article CAS  Google Scholar 

  42. Jardetzky, T. S. et al. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides.Proc. Natl. Acd. Sci. USA93, 734–738 (1996).

    Article CAS  Google Scholar 

  43. Lampson, L. A. & Levy, R. Two populations of Ia-like molecules on a human B cell line.J. Immunol.125, 293–299 (1980).

    CAS PubMed  Google Scholar 

  44. Adams, T. E., Bodmer, J. G. & Bodmer, W. F. Production and characterization of monoclonal antibodies recognizing the α-chain subunits of human Ia alloantigens.Immunology50, 613–624 (1983).

    CAS PubMed PubMed Central  Google Scholar 

  45. Fukudome, K. et al. Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-1)-induced syncytium formation: altered glycosylation of C33 antigen in HTLV-1-positive T cells.J. Virol.66, 1394–1401 (1992).

    CAS PubMed PubMed Central  Google Scholar 

  46. Maier, B. et al. Multiple cross-reactive self-ligands toBorrelia burgdorferi-specific HLA-DR4-restricted T cells.Eur. J. Immunol.30, 448–457 (2000).

    Article CAS  Google Scholar 

  47. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor necrosis factor α.J. Exp. Med.179, 1109–1118 (1994).

    Article CAS  Google Scholar 

  48. Kropshofer, H., Vogt, A. B., Stern, L. J. & Hämmerling, G. J. Self-release of CLIP in peptide loading of HLA-DR molecules.Science270, 1357–1359 (1995).

    Article CAS  Google Scholar 

  49. Smith, M.-H. et al. Baculoviral expressed HLA class I heavy chains used to screen a synthetic peptide library for allele-specific peptide-binding motifs.Mol. Immunol.16, 1033–1043 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Kamradt for the T cell hybridomas; X. D. Nguyen and H. Klüter for the HLA-typed blood samples; D. Roeder for help with mass spectrometry analysis; D. Avila for peptide synthesis: and T. Harder and E. Palmer for helpful discussions. Supported by project A026 of the Czech Ministry of Education (V. H.). The Basel Institute was founded and supported by Hoffman-La Roche, Ltd., Basel.

Author information

Authors and Affiliations

  1. Basel Institute for Immunology, Basel, 4005, Switzerland

    H. Kropshofer, S. Spindeldreher, T. A. Röhn, N. Platania, C. Grygar, N. Daniel & A. B. Vogt

  2. Roche Center for Medical Genomics, Basel, 4070, Switzerland

    H. Kropshofer & A. B. Vogt

  3. German Red Cross, Blood Transfusion Service, Ulm, 89081, Germany

    A. Wölpl

  4. F. Hoffmann-La Roche Ltd., Pharmaceutical Research, Basel, 4070, Switzerland

    H. Langen

  5. Institute of Molecular Genetics, AS CR, Prague, 14220, Czech Republic

    V. Horejsi

Authors
  1. H. Kropshofer

    You can also search for this author inPubMed Google Scholar

  2. S. Spindeldreher

    You can also search for this author inPubMed Google Scholar

  3. T. A. Röhn

    You can also search for this author inPubMed Google Scholar

  4. N. Platania

    You can also search for this author inPubMed Google Scholar

  5. C. Grygar

    You can also search for this author inPubMed Google Scholar

  6. N. Daniel

    You can also search for this author inPubMed Google Scholar

  7. A. Wölpl

    You can also search for this author inPubMed Google Scholar

  8. H. Langen

    You can also search for this author inPubMed Google Scholar

  9. V. Horejsi

    You can also search for this author inPubMed Google Scholar

  10. A. B. Vogt

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toH. Kropshofer.

Rights and permissions

About this article

Cite this article

Kropshofer, H., Spindeldreher, S., Röhn, T.et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide–MHC class II complexes.Nat Immunol3, 61–68 (2002). https://doi.org/10.1038/ni750

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

All peptide-MHC complexes are not created equal

  • Peter E. Jensen
Nature ImmunologyNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp