Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Immunology
  • Review Article
  • Published:

Cancer immunoediting: from immunosurveillance to tumor escape

Nature Immunologyvolume 3pages991–998 (2002)Cite this article

Abstract

The concept that the immune system can recognize and destroy nascent transformed cells was originally embodied in the cancer immunosurveillance hypothesis of Burnet and Thomas. This hypothesis was abandoned shortly afterwards because of the absence of strong experimental evidence supporting the concept. New data, however, clearly show the existence of cancer immunosurveillance and also indicate that it may function as a component of a more general process of cancer immunoediting. This process is responsible for both eliminating tumors and sculpting the immunogenic phenotypes of tumors that eventually form in immunocompetent hosts. In this review, we will summarize the historical and experimental basis of cancer immunoediting and discuss its dual roles in promoting host protection against cancer and facilitating tumor escape from immune destruction.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three Es of cancer immunoediting.
Figure 2: A proposed model for the elimination phase of the cancer immunoediting process.

Similar content being viewed by others

Article09 April 2021

References

  1. Ehrlich, P. Ueber den jetzigen stand der Karzinomforschung.Ned. Tijdschr. Geneeskd.5, 273–290 (1909).

    Google Scholar 

  2. Silverstein, A.M.A History of Immunology (Academic, San Diego, CA, 1989).

  3. Old, L.J. & Boyse, E.A. Immunology of experimental tumors.Annu. Rev. Med.15, 167–186 (1964).

    Article CAS PubMed  Google Scholar 

  4. Klein, G. Tumor antigens.Annu. Rev. Microbiol.20, 223–252 (1966).

    Article CAS PubMed  Google Scholar 

  5. Burnet, F.M. Cancer—a biological approach.Brit. Med. J.1, 841–847 (1957).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Thomas, L. inCellular and Humoral Aspects of the Hypersensitive States (ed. Lawrence, H. S.) 529–532 (Hoeber-Harper, New York, 1959).

    Google Scholar 

  7. Burnet, F.M. The concept of immunological surveillance.Prog. Exp. Tumor Res.13, 1–27 (1970).

    Article CAS PubMed  Google Scholar 

  8. Burnet, F.M. Immunological factors in the process of carcinogenesis.Br. Med. Bull.20, 154–158 (1964).

    Article CAS PubMed  Google Scholar 

  9. Kaplan, H.S. Role of immunologic disturbance in human oncogenesis: some facts and fancies.Br. J. Cancer25, 620–634 (1971).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Stutman, O. Immunodepression and malignancy.Adv. Cancer Res.22, 261–422 (1975).

    Article CAS PubMed  Google Scholar 

  11. Grant, G.A. & Miller, J.F. Effect of neonatal thymectomy on the induction of sarcomata in C57BL mice.Nature205, 1124–1125 (1965).

    Article CAS PubMed  Google Scholar 

  12. Nishizuka, Y., Nakakuki, K. & Usui, M. Enhancing effect of thymectomy on hepatotumorigenesis in Swiss mice following neonatal injection of 20-methylcholanthrene.Nature205, 1236–1238 (1965).

    Article  Google Scholar 

  13. Trainin, N., Linker-Israeli, M., Small, M. & Boiato-Chen, L. Enhancement of lung adenoma formation by neonatal thymectomy in mice treated with 7,12-dimethylbenz(a)anthracene or urethan.Int. J. Cancer2, 326–336 (1967).

    Article CAS PubMed  Google Scholar 

  14. Burstein, N.A. & Law, L.W. Neonatal thymectomy and non-viral mammary tumours in mice.Nature231, 450–452 (1971).

    Article CAS PubMed  Google Scholar 

  15. Sanford, B.H., Kohn, H.I., Daly, J.J. & Soo, S.F. Long-term spontaneous tumor incidence in neonatally thymectomized mice.J. Immunol.110, 1437–1439 (1973).

    CAS PubMed  Google Scholar 

  16. Klein, G. Immunological surveillance against neoplasia.Harvey Lect., 71–102 (1973).

  17. Flanagan, S.P. 'Nude', a new hairless gene with pleiotropic effects in the mouse.Genet. Res.8, 295–309 (1966).

    Article CAS PubMed  Google Scholar 

  18. Pantelouris, E.M. Absence of thymus in a mouse mutant.Nature217, 370–371 (1968).

    Article CAS PubMed  Google Scholar 

  19. Stutman, O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice.Science183, 534–536 (1974).

    Article CAS PubMed  Google Scholar 

  20. Stutman, O. inProceedings of the International Workshop on Nude Mice Vol.1 (eds. Rygaard, J. & Poulsen, C.) 257–264 (Gustav Fischer, Stuttgart 1973).

    Google Scholar 

  21. Stutman, O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous and heterozygous matings and effect of age and carcinogen dose.J. Natl. Cancer Inst.2, 353–358 (1979).

    Google Scholar 

  22. Outzen, H.C., Custer, R.P., Eaton, G.J. & Prehn, R.T. Spontaneous and induced tumor incidence in germfree “nude” mice.J. Reticuloendothel. Soc.17, 1–9 (1975).

    CAS PubMed  Google Scholar 

  23. Stutman, O. inThe Nude Mouse in Experimental and Clinical Research (eds. Fogh, J. & Giovanella, B. C.) 411–435 (Academic, New York, 1978).

    Google Scholar 

  24. Rygaard, J. & Povlsen, C.O. Is immunological surveillance not a cell-mediated immune function?Transplantation17, 135–136 (1974).

    Article CAS PubMed  Google Scholar 

  25. Rygaard, J. & Povlsen, C.O. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance.Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol.82, 99–106 (1974).

    CAS  Google Scholar 

  26. Maleckar, J.R. & Sherman, L.A. The composition of the T cell receptor repertoire in nude mice.J. Immunol.138, 3873–3876 (1987).

    CAS PubMed  Google Scholar 

  27. Ikehara, S., Pahwa, R.N., Fernandes, G., Hansen, C.T. & Good, R.A. Functional T cells in athymic nude mice.Proc. Natl. Acad. Sci. USA81, 886–888 (1984).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Hunig, T. T-cell function and specificity in athymic mice.Immunol. Today4, 84–87 (1983).

    Article CAS PubMed  Google Scholar 

  29. Heidelberger, C. Chemical carcinogenesis.Annu. Rev. Biochem.44, 79–121 (1975).

    Article CAS PubMed  Google Scholar 

  30. Kouri, R.E. & Nebert, D.W. inOrigins of Human Cancer (eds. Hiatt, H. H., Watson, J. D. & Winsten, J. A.) 811–835 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977).

    Google Scholar 

  31. Hayday, A.C. γδ cells: a right time and a right place for a conserved third way of protection.Annu. Rev. Immunol.18, 975–1026 (2000).

    Article CAS PubMed  Google Scholar 

  32. Prehn, R.T. Perspectives on oncogenesis: does immunity stimulate or inhibit neoplasia?J. Reticuloenothel. Soc.10, 1–16 (1970).

    Google Scholar 

  33. Thomas, L. On immunosurveillance in human cancer.Yale J. Biol. Med.55, 329–333 (1982).

    CAS PubMed PubMed Central  Google Scholar 

  34. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer.Cell100, 57–70 (2000).

    Article CAS PubMed  Google Scholar 

  35. Herberman, R.B. & Holden, H.T. Natural cell-mediated immunity.Adv. Cancer Res.27, 305–377 (1978).

    Article CAS PubMed  Google Scholar 

  36. Engel, A.M. et al. Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression.APMIS104, 629–639 (1996).

    Article CAS PubMed  Google Scholar 

  37. Engel, A.M., Svane, I.M., Rygaard, J. & Werdelin, O. MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice.Scand. J. Immunol.45, 463–470 (1997).

    Article CAS PubMed  Google Scholar 

  38. Schuler, W. et al. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency.Cell46, 963–972 (1986).

    Article CAS PubMed  Google Scholar 

  39. Featherstone, C. & Jackson, S.P. DNA double-strand break repair.Curr. Biol.9, R759–R761 (1999).

    Article CAS PubMed  Google Scholar 

  40. Dighe, A.S., Richards, E., Old, L.J. & Schreiber, R.D. Enhancedin vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN-γ receptors.Immunity1, 447–456 (1994).

    Article CAS PubMed  Google Scholar 

  41. Kaplan, D.H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice.Proc. Natl. Acad. Sci. USA95, 7556–7561 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Street, S.E., Cretney, E. & Smyth, M.J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis.Blood97, 192–197 (2001).

    Article CAS PubMed  Google Scholar 

  43. Street, S.E., Trapani, J.A., MacGregor, D. & Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon γ.J. Exp. Med.196, 129–134 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Russell, J.H. & Ley, T.J. Lymphocyte-mediated cytotoxicity.Annu. Rev. Immunol.20, 323–370 (2002).

    Article CAS PubMed  Google Scholar 

  45. van den Broek, M.F. et al. Decreased tumor surveillance in perforin-deficient mice.J.Exp.Med.184, 1781–1790 (1996).

    Article CAS PubMed  Google Scholar 

  46. Smyth, M.J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells.J. Exp. Med.191, 661–668 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma.J. Exp. Med.192, 755–760 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement.Cell68, 855–867 (1992).

    Article CAS PubMed  Google Scholar 

  49. Shankaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity.Nature410, 1107–1111 (2001).

    Article CAS PubMed  Google Scholar 

  50. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells.Science294, 605–609 (2001).

    Article CAS PubMed  Google Scholar 

  51. Penn, I.Malignant Tumors in Organ Transplant Recipients (Springer-Verlag, New York, 1970).

  52. Gatti, R.A. & Good, R.A. Occurrence of malignancy in immunodeficiency diseases. A literature review.Cancer28, 89–98 (1971).

    Article CAS PubMed  Google Scholar 

  53. Penn, I. Posttransplant malignancies.Transplant Proc.31, 1260–1262 (1999).

    Article CAS PubMed  Google Scholar 

  54. Birkeland, S.A. et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986.Int. J. Cancer60, 183–189 (1995).

    Article CAS PubMed  Google Scholar 

  55. Sheil, A.G.R. inKidney Transplantation (ed. Morris, P. J.) 558–570 (Saunders, Philadelphia, 2001).

    Google Scholar 

  56. Boshoff, C. & Weiss, R. AIDS-related malignancies.Nature Rev. Cancer2, 373–382 (2002).

    Article CAS  Google Scholar 

  57. Hoover, R.N. inOrigins of Human Cancer (eds. Hiatt, H. H., Watson, J. D. & Winsten, J. A.) 369–379 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977).

    Google Scholar 

  58. Sheil, A.G. Cancer after transplantation.World J. Surg.10, 389–396 (1986).

    Article CAS PubMed  Google Scholar 

  59. Penn, I. Malignant melanoma in organ allograft recipients.Transplantation61, 274–278 (1996).

    Article CAS PubMed  Google Scholar 

  60. Penn, I. Sarcomas in organ allograft recipients.Transplantation60, 1485–1491 (1995).

    Article CAS PubMed  Google Scholar 

  61. Pham, S.M. et al. Solid tumors after heart transplantation: lethality of lung cancer.Ann. Thorac. Surg.60, 1623–1626 (1995).

    Article CAS PubMed  Google Scholar 

  62. Clark, W.H. Jr et al. Model predicting survival in stage I melanoma based on tumor progression.J. Natl. Cancer Inst.81, 1893–1904 (1989).

    Article PubMed  Google Scholar 

  63. Clemente, C.G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma.Cancer77, 1303–1310 (1996).

    Article CAS PubMed  Google Scholar 

  64. Mihm, M.C. Jr, Clemente, C.G. & Cascinelli, N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response.Lab. Invest.74, 43–47 (1996).

    PubMed  Google Scholar 

  65. Rilke, F. et al. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors.Int. J. Cancer49, 44–49 (1991).

    Article CAS PubMed  Google Scholar 

  66. Lipponen, P.K., Eskelinen, M.J., Jauhiainen, K., Harju, E. & Terho, R. Tumour infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder cancer.Eur. J. Cancer29A, 69–75 (1992).

    CAS PubMed  Google Scholar 

  67. Nacopoulou, L., Azaris, P., Papacharalampous, N. & Davaris, P. Prognostic significance of histologic host response in cancer of the large bowel.Cancer47, 930–936 (1981).

    Article CAS PubMed  Google Scholar 

  68. Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer.Cancer Res.58, 3491–3494 (1998).

    CAS PubMed  Google Scholar 

  69. Epstein, N.A. & Fatti, L.P. Prostatic carcinoma: some morphological features affecting prognosis.Cancer37, 2455–2465 (1976).

    Article CAS PubMed  Google Scholar 

  70. Deligdisch, L., Jacobs, A.J. & Cohen, C.J. Histologic correlates of virulence in ovarian adenocarcinoma. II. Morphologic correlates of host response.Am. J. Obstet. Gynecol.144, 885–889 (1982).

    Article CAS PubMed  Google Scholar 

  71. Jass, J.R. Lymphocytic infiltration and survival in rectal cancer.J. Clin. Pathol.39, 585–589 (1986).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Palma, L., Di Lorenzo, N. & Guidetti, B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases.J. Neurosurg.49, 854–861 (1978).

    Article CAS PubMed  Google Scholar 

  73. Uyttenhove, C., Van Snick, J. & Boon, T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. I. Rejection by syngeneic mice.J. Exp. Med.152, 1175–1183 (1980).

    Article CAS PubMed  Google Scholar 

  74. Urban, J.L., Holland, J.M., Kripke, M.L. & Schreiber, H. Immunoselection of tumor cell variants by mice suppressed with ultraviolet radiation.J. Exp. Med.156, 1025–1041 (1982).

    Article CAS PubMed  Google Scholar 

  75. Svane, I.M. et al. Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice.Eur. J. Immunol.26, 1844–1850 (1996).

    Article CAS PubMed  Google Scholar 

  76. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers.Nature396, 643–649 (1998).

    Article CAS PubMed  Google Scholar 

  77. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.Cell86, 353–364 (1996).

    Article CAS PubMed  Google Scholar 

  78. Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy.Nature Immunol.2, 293–299 (2001).

    Article CAS  Google Scholar 

  79. Matzinger, P. Tolerance, danger, and the extended family.Annu. Rev. Immunol.12, 991–1045 (1994).

    Article CAS PubMed  Google Scholar 

  80. Yokoyama, W.M. Now you see it, now you don't!Nature Immunol.1, 95–97 (2000).

    Article CAS  Google Scholar 

  81. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice.Immunity12, 721–727 (2000).

    Article CAS PubMed  Google Scholar 

  82. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity.Nature413, 165–171 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  83. Bromberg, J.F., Horvath, C.M., Wen, Z., Schreiber, R.D. & Darnell, J.E. Jr. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon α and interferon γ.Proc. Natl. Acad. Sci. USA93, 7673–7678 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  84. Kumar, A., Commane, M., Flickinger, T.W., Horvath, C.M. & Stark, G.R. Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases.Science278, 1630–1632 (1997).

    Article CAS PubMed  Google Scholar 

  85. Luster, A.D. & Ravetch, J.V. Biochemical characterization of a γ interferon-inducible cytokine (IP-10).J. Exp. Med.166, 1084–1097 (1987).

    Article CAS PubMed  Google Scholar 

  86. Liao, F. et al. Human Mig chemokine: biochemical and functional characterization.J. Exp. Med.182, 1301–1314 (1995).

    Article CAS PubMed  Google Scholar 

  87. Cole, K.E. et al. Interferon-inducible T cell α chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3.J. Exp. Med.187, 2009–2021 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Luster, A.D. & Leder, P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor responsein vivo.J. Exp. Med.178, 1057–1065 (1993).

    Article CAS PubMed  Google Scholar 

  89. Sgadari, C., Angiolillo, A.L. & Tosato, G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10.Blood87, 3877–3882 (1996).

    Article CAS PubMed  Google Scholar 

  90. Coughlin, C.M. et al. Tumor cell responses to IFN-γ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis.Immunity9, 25–34 (1998).

    Article CAS PubMed  Google Scholar 

  91. Qin, Z. & Blankenstein, T. CD4+ T cell–mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN-γ receptor expression by nonhematopoietic cells.Immunity12, 677–686 (2000).

    Article CAS PubMed  Google Scholar 

  92. Bancroft, G.J., Schreiber, R.D. & Unanue, E.R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse.Immunol. Rev.124, 5–24 (1991).

    Article CAS PubMed  Google Scholar 

  93. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity.Annu. Rev. Immunol.13, 251–276 (1995).

    Article CAS PubMed  Google Scholar 

  94. Ikeda, H., Old, L.J. & Schreiber, R.D. The roles of IFN-γ in protection against tumor development and cancer immunoediting.Cytokine Growth Factor Rev.13, 95–109 (2002).

    Article CAS PubMed  Google Scholar 

  95. Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development.J. Exp. Med.195, 161–169 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Pardoll, D.M. Spinning molecular immunology into successful immunotherapy.Nature Rev. Immunol.2, 227–238 (2002).

    Article CAS  Google Scholar 

  97. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells.J. Exp. Med.195, 327–333 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  98. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognizedvia the NKp30 receptor by activated NK cells.J. Exp. Med.195, 343–351 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells.J. Exp. Med.195, 335–341 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Smyth, M.J., Crowe, N.Y. & Godfrey, D.I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma.Int. Immunol.13, 459–463 (2001).

    Article CAS PubMed  Google Scholar 

  101. Noguchi, Y., Jungbluth, A., Richards, E. & Old, L.J. Effect of interleukin 12 on tumor induction by 3-methylcholanthrene.Proc. Natl. Acad. Sci. USA93, 11798–11801 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Cancer Institute (CA43059 and CA76464 to R. D. S.), the Cancer Research Institute (to R. D. S., H.I and A.B.), the Ludwig Institute for Cancer Research (to R. D. S.), and the National Institute of Allergy and Infectious Diseases (to R. D. S. and G. P. D.). We thank V. Shankaran, K. Sheehan, A. Dighe, D. Kaplan, R. Uppaluri, C. Koebel, J. Bui, E. Stockert, E. Richards, M. White, C. Arthur and C. Brendel for their important roles in developing the cancer immunoediting concept and for helpful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

  1. Department of Pathology and Immunology, Center for Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, 63110, MO, USA

    Gavin P. Dunn, Allen T. Bruce, Hiroaki Ikeda & Robert D. Schreiber

  2. Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, 10021, NY, USA

    Lloyd J. Old

Authors
  1. Gavin P. Dunn

    You can also search for this author inPubMed Google Scholar

  2. Allen T. Bruce

    You can also search for this author inPubMed Google Scholar

  3. Hiroaki Ikeda

    You can also search for this author inPubMed Google Scholar

  4. Lloyd J. Old

    You can also search for this author inPubMed Google Scholar

  5. Robert D. Schreiber

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toRobert D. Schreiber.

Rights and permissions

About this article

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp