Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Immunology
  • Article
  • Published:

Modulation of tryptophan catabolism by regulatory T cells

Nature Immunologyvolume 4pages1206–1212 (2003)Cite this article

Abstract

Regulatory T (TR) cells manifest constitutive expression of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), but the function of CTLA-4 in mediating the regulatory function of TR cells is unclear. We show here that mouse CD4+CD25+ cells, either resting or induced to overexpress CTLA-4 by treatment with antibody to CD3, initiated tryptophan catabolism in dendritic cells through a CTLA-4-dependent mechanism. This process required B7 expression and cytokine production by the dendritic cells. In contrast, TR cells cultured in the presence of bacterial lipopolysaccharide induced tryptophan catabolism by dendritic cells in a CTLA-4-independent but cytokine-dependent way. Thus, regulation of immunosuppressive tryptophan catabolism in dendritic cells might represent a major mechanism of action of TR cells.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytofluorometric analysis of Jurkat cells stained with anti-CTLA-4.
Figure 2: Surface expression of CTLA-4 correlates with induction of IFN-γ and tryptophan catabolism in mouse DCs.
Figure 3: Cytofluorometric analysis of CD4+CD25 and CD4+CD25+ cells stained with anti-CTLA-4.
Figure 4: CD4+CD25+ T cells induce IFN-γ production and tryptophan catabolism in DCs.
Figure 5: B7 expression and IFN-γ production by DCs are required for modulation of tryptophan catabolism by TR cells.
Figure 6: CD4+CD25+ cells prime DCs for tolerogenic presentation of a synthetic peptidein vivo through an IDO-dependent mechanism.

Similar content being viewed by others

References

  1. Bluestone, J.A. & Abbas, A.K. Natural versus adaptive regulatory T cells.Nat. Rev. Immunol.3, 253–257 (2003).

    Article CAS  Google Scholar 

  2. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance.Immunol. Rev.182, 18–32 (2001).

    Article CAS  Google Scholar 

  3. Mottet, C., Uhlig, H.H. & Powrie, F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells.J. Immunol.170, 3939–3943 (2003).

    Article CAS  Google Scholar 

  4. Shevach, E.M. CD4+CD25+ suppressor T cells: more questions than answers.Nat. Rev. Immunol.2, 389–400 (2002).

    Article CAS  Google Scholar 

  5. Shortman, K. & Heath, W.R. Immunity or tolerance? That is the question for dendritic cells.Nat. Immunol.2, 988–989 (2001).

    Article CAS  Google Scholar 

  6. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance.Proc. Natl. Acad. Sci. USA99, 351–358 (2002).

    Article CAS  Google Scholar 

  7. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4.J. Exp. Med.192, 303–310 (2000).

    Article CAS  Google Scholar 

  8. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation.J. Exp. Med.192, 295–302 (2000).

    Article CAS  Google Scholar 

  9. Alegre, M.L., Frauwirth, K.A. & Thompson, C.B. T-cell regulation by CD28 and CTLA-4.Nat. Rev. Immunol.1, 220–228 (2001).

    Article CAS  Google Scholar 

  10. Thompson, C.B. & Allison, J.P. The emerging role of CTLA-4 as an immune attenuator.Immunity7, 445–450 (1997).

    Article CAS  Google Scholar 

  11. Oosterwegel, M.A., Greenwald, R.J., Mandelbrot, D.A., Lorsbach, R.B. & Sharpe, A.H. CTLA-4 and T cell activation.Curr. Opin. Immunol.11, 294–300 (1999).

    Article CAS  Google Scholar 

  12. Salomon, B. & Bluestone, J.A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation.Annu. Rev. Immunol.19, 225–252 (2001).

    Article CAS  Google Scholar 

  13. Sansom, D.M., Manzotti, C.N. & Zheng, Y. What's the difference between CD80 and CD86?Trends Immunol.24, 313–318 (2003).

    Article  Google Scholar 

  14. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolismin vivo.Nat. Immunol.3, 1097–1101 (2002).

    Article CAS  Google Scholar 

  15. Finger, E.B. & Bluestone, J.A. When ligand becomes receptor—tolerance via B7 signaling on DCs.Nat. Immunol.3, 1056–1057 (2002).

    Article CAS  Google Scholar 

  16. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism.Science281, 1191–1193 (1998).

    Article CAS  Google Scholar 

  17. Grohmann, U. et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice.J. Exp. Med.198, 153–160 (2003).

    Article CAS  Google Scholar 

  18. Grohmann, U., Fallarino, F. & Puccetti, P. Tolerance, DCs and tryptophan: much ado about IDO.Trends Immunol.24, 242–248 (2003).

    Article CAS  Google Scholar 

  19. Mellor, A.L. & Munn, D.H. Tryptophan catabolism and regulation of adaptive immunity.J. Immunol.170, 5809–5813 (2003).

    Article CAS  Google Scholar 

  20. Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression.J. Immunol.159, 144–151 (1997).

    CAS PubMed  Google Scholar 

  21. Piccirillo, C.A. & Shevach, E.M. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells.J. Immunol.167, 1137–1140 (2001).

    Article CAS  Google Scholar 

  22. McHugh, R.S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor.Immunity16, 311–323 (2002).

    Article CAS  Google Scholar 

  23. Caramalho, I. et al. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide.J. Exp. Med.197, 403–411 (2003).

    Article CAS  Google Scholar 

  24. Curreli, S. et al. Human primary CD4+ T cells activated in the presence of IFN-α 2b express functional indoleamine 2,3-dioxygenase.J. Interferon Cytokine Res.21, 431–437 (2001).

    Article CAS  Google Scholar 

  25. Munn, D.H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase.Science297, 1867–1870 (2002).

    Article CAS  Google Scholar 

  26. Anderson, B., Park, B.J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes.Proc. Natl. Acad. Sci. USA96, 9311–9316 (1999).

    Article CAS  Google Scholar 

  27. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population.Nature406, 739–742 (2000).

    Article CAS  Google Scholar 

  28. Grohmann, U. et al. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells.J. Immunol.166, 277–283 (2001).

    Article CAS  Google Scholar 

  29. Grohmann, U. et al. IL-6 inhibits the tolerogenic function of CD8α+ dendritic cells expressing indoleamine 2,3-dioxygenase.J. Immunol.167, 708–714 (2001).

    Article CAS  Google Scholar 

  30. Grohmann, U. et al. Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation.J. Immunol.171, 2581–2587 (2003).

    Article CAS  Google Scholar 

  31. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activationin vitro by inhibiting interleukin 2 production.J. Exp. Med.188, 287–296 (1998).

    Article CAS  Google Scholar 

  32. Thornton, A.M. & Shevach, E.M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific.J. Immunol.164, 183–190 (2000).

    Article CAS  Google Scholar 

  33. Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells.Eur. J. Immunol.30, 1538–1543 (2000).

    Article CAS  Google Scholar 

  34. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state.Int. Immunol.10, 1969–1980 (1998).

    Article CAS  Google Scholar 

  35. Levings, M.K., Sangregorio, R. & Roncarolo, M.G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expandedin vitro without loss of function.J. Exp. Med.193, 1295–1302 (2001).

    Article CAS  Google Scholar 

  36. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells controlLeishmania major persistence and immunity.Nature420, 502–507 (2002).

    Article CAS  Google Scholar 

  37. Maloy, K.J. et al. CD4+CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms.J. Exp. Med.197, 111–119 (2003).

    Article CAS  Google Scholar 

  38. Bach, J.F. & Chatenoud, L. Tolerance to islet autoantigens in type 1 diabetes.Annu. Rev. Immunol.19, 131–161 (2001).

    Article CAS  Google Scholar 

  39. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β.J. Exp. Med.194, 629–644 (2001).

    Article CAS  Google Scholar 

  40. Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses.J. Immunol.168, 1080–1086 (2002).

    Article CAS  Google Scholar 

  41. Grohmann, U. et al. IFN-γ inhibits presentation of a tumor/self peptide by CD8α dendritic cells via potentiation of the CD8α+ subset.J. Immunol.165, 1357–1363 (2000).

    Article CAS  Google Scholar 

  42. Grohmann, U. & Puccetti, P. CTLA-4, T helper lymphocytes and dendritic cells: an internal perspective of T-cell homeostasis.Trends Mol. Med.9, 133–135 (2003).

    Article CAS  Google Scholar 

  43. Fallarino, F. et al. CD40 ligand and CTLA-4 are reciprocally regulated in the Th1 cell proliferative response sustained by CD8+ dendritic cells.J. Immunol.169, 1182–1188 (2002).

    Article CAS  Google Scholar 

  44. Fallarino, F. et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells.Int. Immunol.14, 65–68 (2002).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank M.P. Colombo for the gift of genetically deficient mice. Supported by the Italian Association for Cancer Research.

Author information

Authors and Affiliations

  1. Department of Experimental Medicine, University of Perugia, Perugia, 06126, Italy

    Francesca Fallarino, Ursula Grohmann, Ciriana Orabona, Carmine Vacca, Roberta Bianchi, Maria Laura Belladonna, Maria Cristina Fioretti & Paolo Puccetti

  2. Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA

    Kwang Woo Hwang & Maria-Luisa Alegre

Authors
  1. Francesca Fallarino

    You can also search for this author inPubMed Google Scholar

  2. Ursula Grohmann

    You can also search for this author inPubMed Google Scholar

  3. Kwang Woo Hwang

    You can also search for this author inPubMed Google Scholar

  4. Ciriana Orabona

    You can also search for this author inPubMed Google Scholar

  5. Carmine Vacca

    You can also search for this author inPubMed Google Scholar

  6. Roberta Bianchi

    You can also search for this author inPubMed Google Scholar

  7. Maria Laura Belladonna

    You can also search for this author inPubMed Google Scholar

  8. Maria Cristina Fioretti

    You can also search for this author inPubMed Google Scholar

  9. Maria-Luisa Alegre

    You can also search for this author inPubMed Google Scholar

  10. Paolo Puccetti

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toPaolo Puccetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Fallarino, F., Grohmann, U., Hwang, K.et al. Modulation of tryptophan catabolism by regulatory T cells.Nat Immunol4, 1206–1212 (2003). https://doi.org/10.1038/ni1003

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp