Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Immunology
  • Resource
  • Published:

A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate

Nature Immunologyvolume 11pages635–643 (2010)Cite this article

Subjects

Abstract

It is now established that the transcription factors E2A, EBF1 and Foxo1 have critical roles in B cell development. Here we show that E2A and EBF1 bound regulatory elements present in theFoxo1 locus. E2A and EBF1, as well as E2A and Foxo1, in turn, were wired together by a vast spectrum ofcis-regulatory sequences. These associations were dynamic during developmental progression. Occupancy by the E2A isoform E47 directly resulted in greater abundance, as well as a pattern of monomethylation of histone H3 at lysine 4 (H3K4) across putative enhancer regions. Finally, we divided the pro-B cell epigenome into clusters of loci with occupancy by E2A, EBF and Foxo1. From this analysis we constructed a global network consisting of transcriptional regulators, signaling and survival factors that we propose orchestrates B cell fate.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E2A occupancy and epigenetic marking in cultured EBF1-deficient pre-pro-B cells and RAG-1-deficient pro-B cells.
Figure 2: E2A occupancy and H3K4 methylation in cultured RAG-1-deficient pro-B cells.
Figure 3: E2A occupancy and patterns of H3K4 methylation in cultured EBF1-deficient pre-pro-B cells and RAG-1-deficient pro-B cells.
Figure 4: Distinctcis-regulatory DNA sequences associate with E2A occupancy in cultured RAG-1-deficient pro-B cells.
Figure 5: Distinct patterns of H3K4 monomethylation are associated with coordinated occupancy by E2A and EBF1 and Foxo1.
Figure 6: Coordinated binding of E2A, EBF and Foxo1 is associated with a B lineage–specific program of gene expression.
Figure 7: Binding of E47 to DNA alters the pattern of H3K4 monomethylation.
Figure 8: Regulatory network that links the activities of an ensemble of transcriptional regulators, signaling components and survival factors in developing B cells into a common pathway.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Cosgrove, M.S. Histone proteomics and the epigenetic regulation of nucleosome mobility.Expert Rev. Proteomics4, 465–478 (2007).

    Article CAS PubMed  Google Scholar 

  2. Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules.Nat. Rev. Mol. Cell Biol.8, 983–994 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast.Cell26, 517–527 (2005).

    Article  Google Scholar 

  4. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet.39, 311–318 (2007).

    Article CAS PubMed  Google Scholar 

  5. Kee, B.L. & Murre, C. Induction of EBF and multiple B lineage genes by the helix-loop-helix protein E12.J. Exp. Med.188, 699–713 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Ikawa, T., Kawamoto, H., Wright, L.Y. & Murre, C. Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent.Immunity20, 349–360 (2004).

    Article CAS PubMed  Google Scholar 

  7. Inlay, M.A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development.Genes Dev.23, 2376–2381 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Beck, K., Peak, M.M., Ota, T., Nemazee, D. & Murre, C. Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci.J. Exp. Med.206, 2271–2284 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Decker, T. et al. Stepwise activation of enhancer and promoter regions of the B cell commitment genePax5 in early lymphopoiesis.Immunity30, 508–520 (2009).

    Article CAS PubMed  Google Scholar 

  10. Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5.Mol. Cell. Biol.2, 579–594 (2007).

    Article  Google Scholar 

  11. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors E2A and EBF.Immunity11, 21–31 (1999).

    Article CAS PubMed  Google Scholar 

  12. Liu, P. et al. Bcl11a is essential for normal lymphoid development.Nat. Immunol.4, 525–531 (2003).

    Article CAS PubMed  Google Scholar 

  13. Dengler, H.S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation.Nat. Immunol.9, 1388–1398 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  14. Amin, R.H. & Schlissel, M.S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development.Nat. Immunol.9, 396–404 (2008).

    Article  Google Scholar 

  15. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5.Nature401, 556–572 (1999).

    Article CAS PubMed  Google Scholar 

  16. Pongubala, J.M. et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5.Nat. Immunol.9, 203–215 (2008).

    Article CAS PubMed  Google Scholar 

  17. Murre, C. Developmental trajectories in early hematopoiesis.Genes Dev.15, 2366–2370 (2009).

    Article  Google Scholar 

  18. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation.Cell Stem Cell4, 80–93 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Visel, A. et al. ChIP-Seq accurately predicts tissue-specific activity of enhancers.Nature12, 854–858 (2009).

    Article  Google Scholar 

  20. Heintzman, N. et al. Histone modifications at human enhancers reflect global cell-type specific gene expression.Nature459, 108–112 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Agata, Y. et al. Regulation of T cell receptor beta gene rearrangements and allelic exclusion by the helix-loop-helix protein, E47.Immunity27, 871–884 (2007).

    Article CAS PubMed  Google Scholar 

  22. Barski, A. et al. High resolution profiling of histone methylations in the human genome.Cell129, 823–837 (2007).

    Article CAS PubMed  Google Scholar 

  23. Ward, J.H. Hierarchical grouping to optimize an objective function.J. Am. Stat. Assoc.58, 236–242 (1963).

    Article  Google Scholar 

  24. Shannon, P. et al. Cytoscape a software environment for integrated models of biomolecular interaction networks.Genome Res.13, 2498–2504 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Maere, S., Heymans, K. & Kuiper, M. Bingo: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks.Bioinformatics21, 3448–3449 (2005).

    Article CAS PubMed  Google Scholar 

  26. Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate.Dev. Cell7, 607–617 (2004).

    Article CAS PubMed  Google Scholar 

  27. Ikawa, T., Kawamoto, H., Goldrath, A.W. & Murre, C. E proteins and Notch signaling cooperate T lineage specific progression and commitment.J. Exp. Med.15, 1329–1342 (2006).

    Article  Google Scholar 

  28. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress.Cell128, 325–339 (2007).

    Article CAS PubMed  Google Scholar 

  29. Yang, Q. et al. E47 controls the developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors.J. Immunol.181, 5885–5894 (2008).

    Article CAS PubMed  Google Scholar 

  30. Dias, S., Mansson, R., Gurbuxani, S., Sigvardsson, M. & Kee, B.L. E2A proteins promote development of lymphoid-primed multipotent progenitors.Immunity29, 217–227 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Semerad, C.L., Mercer, E.M., Inlay, M.A., Weissman, I.L. & Murre, C. E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphid and myeloerythorid progenitors.Proc. Natl. Acad. USA106, 1930–1935 (2009).

    Article CAS  Google Scholar 

  32. Bain, G. et al. Both E12 and E47 allow commitment to the B cell lineage.Immunity6, 145–154 (1997b).

    Article CAS PubMed  Google Scholar 

  33. Llorian, M., Stamataki, Z., Hill, S., Turner, M. & Martensson, I.L. The PI3K p110δ is required for down-regulation of RAG expression in immature B cells.J. Immunol.178, 1981–1985 (2007).

    Article CAS PubMed  Google Scholar 

  34. Quong, M.W. et al. Receptor editing and marginal zone B cell development are regulated by the helix-loop-helix protein, E2A.J. Exp. Med.199, 1101–1112 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Anzelon, A.N., Wu, H. & Rickert, R.C.Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function.Nat. Immunol.4, 287–294 (2003).

    Article CAS PubMed  Google Scholar 

  36. Sayegh, C.E., Quong, M.W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells.Nat. Immunol.4, 586–593 (2003).

    Article CAS PubMed  Google Scholar 

  37. Suzuki, A. et al. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination.J. Exp. Med.197, 657–667 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Engel, I. & Murre, C. E2A proteins enforce a proliferation checkpoint in developing thymocytes.EMBO J.23, 202–211 (2004).

    Article CAS PubMed  Google Scholar 

  39. Hagenbeek, T.J. et al. The loss of PTEN allows TCR αβ lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling.J. Exp. Med.200, 883–894 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Engel, I. & Murre, C. Disruption of pre-TCR expression accelerates lymphomagenesis in E2A-deficient mice.Proc. Natl. Acad. Sci. USA99, 11322–11327 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis.Cell28, 309–323 (2007).

    Article  Google Scholar 

  42. Bain, G. et al. E2A deficiency leads to abnormalities in α/β T-cell development and to rapid development of T-cell lymphomas.Mol. Cell. Biol.17, 4782–4791 (1997a).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Reya, T.O., Riordan, M., Okamura, R., Devaney, E., Willert, K., Nusse, R. & Grosschedl, R. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism.Immunity13, 15–24 (2000).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Hardiman, C. Ludka, L. Edsall and Z. Ye for help with Solexa DNA sequencing; R. DePinho (Harvard Medical School) for Foxo1-deficient mice; J. Sprague and R. Sasik for microarray analysis; and members of the Murre laboratory for comments on the manuscript. Supported by the National Institutes of Health (1F32CA130276 to Y.C.L., P01DK074868 to C.B., F32HL083752 to S.H., CA52599 to C.K.G., AI05466 to J.H. and CA054198-20 to C.M.) and the National Science Foundation (IIS-0803937 to T.I. and BIOGEM DK063491 to the University of California, San Diego Core Facility).

Author information

Author notes
  1. Yin C Lin and Suchit Jhunjhunwala: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA

    Yin C Lin, Suchit Jhunjhunwala, Eva Welinder, Robert Mansson & Cornelis Murre

  2. Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA

    Christopher Benner, Sven Heinz & Christopher K Glass

  3. Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden

    Eva Welinder

  4. Department for Biomedicine and Surgery, Linkoping University, Linkoping, Sweden

    Mikael Sigvardsson

  5. Integrated Department of Immunology, National Jewish Health, Denver, Colorado, USA

    James Hagman

  6. Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA

    Celso A Espinoza

  7. Department of Bioengineering and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA

    Janusz Dutkowski & Trey Ideker

  8. The Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA

    Janusz Dutkowski & Trey Ideker

Authors
  1. Yin C Lin

    You can also search for this author inPubMed Google Scholar

  2. Suchit Jhunjhunwala

    You can also search for this author inPubMed Google Scholar

  3. Christopher Benner

    You can also search for this author inPubMed Google Scholar

  4. Sven Heinz

    You can also search for this author inPubMed Google Scholar

  5. Eva Welinder

    You can also search for this author inPubMed Google Scholar

  6. Robert Mansson

    You can also search for this author inPubMed Google Scholar

  7. Mikael Sigvardsson

    You can also search for this author inPubMed Google Scholar

  8. James Hagman

    You can also search for this author inPubMed Google Scholar

  9. Celso A Espinoza

    You can also search for this author inPubMed Google Scholar

  10. Janusz Dutkowski

    You can also search for this author inPubMed Google Scholar

  11. Trey Ideker

    You can also search for this author inPubMed Google Scholar

  12. Christopher K Glass

    You can also search for this author inPubMed Google Scholar

  13. Cornelis Murre

    You can also search for this author inPubMed Google Scholar

Contributions

Y.C.L. designed and did experiments, analyzed data and wrote the manuscript; S.J. and C.B. wrote programs and analyzed data; S.H. did CTCF ChIP-Seq and monomethylation of H3K4 in RAG-deficient pro-B cells; J.H. generated EBF-deficient pre-pro-B cells; M.S. provided anti-EBF; E.W. and R.M. analyzed E2A-Foxo1–deficient mice; C.A.E. did ChIP-Seq experiments during the initial phase of the study; J.D. and T.I. applied computational approaches to generate a global network; C.K.G. analyzed data and edited the manuscript; and C.M. designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence toChristopher K Glass orCornelis Murre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–7 (PDF 3651 kb)

Rights and permissions

About this article

Cite this article

Lin, Y., Jhunjhunwala, S., Benner, C.et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate.Nat Immunol11, 635–643 (2010). https://doi.org/10.1038/ni.1891

Download citation

Access through your institution
Buy or subscribe

Associated content

B cell specification from the genome up

  • Ellen V Rothenberg
Nature ImmunologyNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp