Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Geoscience
  • Letter
  • Published:

Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics

Nature Geosciencevolume 2pages349–354 (2009)Cite this article

AnErratum to this article was published on 21 May 2009

Abstract

Brine fluids that upwell from deep, hot reservoirs below the sea bed supply the sea floor with energy-rich substrates and nutrients that are used by diverse microbial ecosystems. Contemporary hypersaline environments formed by brine seeps may provide insights into the metabolism and distribution of microorganisms on the early Earth1 or on extraterrestrial bodies2. Here we use geochemical and genetic analyses to characterize microbial community composition and metabolism in two seafloor brines in the Gulf of Mexico: an active mud volcano and a quiescent brine pool. Both brine environments are anoxic and hypersaline. However, rates of sulphate reduction and acetate production are much higher in the brine pool, whereas the mud volcano supports much higher rates of methane production. We find no evidence of anaerobic oxidation of methane, despite high methane fluxes at both sites. We conclude that the contrasting microbial community compositions and metabolisms are linked to differences in dissolved-organic-matter input from the deep subsurface and different fluid advection rates between the two sites.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram illustrating the differences in fluid flow, stratification and surficial chemosynthetic communities between brine pools and mud volcanoes.
Figure 2: Depth profiles of microbial abundance, geochemistry, activity and energetics in the brine pool and mud volcano.
Figure 3: Phylogeny of deltaproteobacteria and epsilonproteobacteria 16S rRNA from the brine pool (GC233) and the mud volcano (GB425) sites.
Figure 4: Neighbour-joining tree of translatedmcrA sequences with 1,000 repetitions of parsimony-based bootstrap support listed for all nodes with greater than 55%.

Similar content being viewed by others

References

  1. Dundas, I. Was the environment for primordial life hypersaline?Extremophiles2, 375–377 (1998).

    Article  Google Scholar 

  2. Mancinelli, R. L., Fahlen, T. F., Landheim, R. & Klovstad, M. R. Brines and evaporates: Analogs for Martian Life.Adv. Space Res.33, 1244–1246 (2004).

    Article  Google Scholar 

  3. MacDonald, I. R. et al. Pulsed oil discharge from a mud volcano.Geology28, 907–910 (2000).

    Article  Google Scholar 

  4. Eder, M. et al. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep.Environ. Microbiol.4, 758–763 (2002).

    Article  Google Scholar 

  5. van der Wielen, P. W. J. J. et al. The enigma of prokaryotic life in deep hypersaline anoxic basins.Science307, 121–123 (2005).

    Article  Google Scholar 

  6. Daffonchio, D. et al. Stratified prokaryotic network in the oxic–anoxic transition of a deep-sea halocline.Nature440, 203–207 (2006).

    Article  Google Scholar 

  7. MacDonald, I. R. et al. Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico.Science248, 1096–1099 (1990).

    Article  Google Scholar 

  8. Joye, S. B., MacDonald, I. R., Montoya, J. P. & Peccini, M. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines.Biogeosciences2, 295–309 (2005).

    Article  Google Scholar 

  9. Oren, A. Bioenergetic aspects of halophilism.Microbiol. Molec. Biol. Rev.63, 334–348 (1999).

    Google Scholar 

  10. Orcutt, B. et al. Molecular biogeochemistry of sulphate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico methane seeps.Geochim. Cosmochim. Acta69, 4267–4281 (2005).

    Article  Google Scholar 

  11. De Beer, D. et al. In situ fluxes and zonation of microbial activity in surface sediments of the Haakon Mosby mud volcano.Limnol. Oceanogr.51, 1315–1331 (2006).

    Article  Google Scholar 

  12. Kelley, D. S et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field.Science307, 1428–1434 (2005).

    Article  Google Scholar 

  13. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Acetogenesis from CO2 in an anoxic marine sediment.Limnol. Oceanogr.44, 662–667 (1999).

    Article  Google Scholar 

  14. Hoehler, T. M., Bebout, B. M. & Des Marais, D. J. The role of microbial mats in the production of reduced gases on the early Earth.Nature412, 324–327 (2001).

    Article  Google Scholar 

  15. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic controls on hydrogen concentrations in anoxic sediments.Geochim. Cosmochim. Acta62, 1745–1756 (1998).

    Article  Google Scholar 

  16. Gelwicks, J. T., Risatti, J. B. & Hayes, J. M. Carbon isotope effects associated with autotrophic acetogenesis.Org. Geochem.14, 441–446 (1989).

    Article  Google Scholar 

  17. Inagaki, F. et al. Biogeographical distribution and diversity of microbes in methane-hydrate bearing deep marine sediments on the Pacific Ocean Margin.Proc. Natl Acad. Sci. USA.103, 2815–2820 (2006).

    Article  Google Scholar 

  18. Drake, H. L., Küsel, K. & Matthies, C. inThe Prokaryotes 3rd edn Vol. 2 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Sttakebrandt, E.) 354–420 (Springer, 2007).

    Google Scholar 

  19. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in anoxic marine sediment—evidence for a methanogen-sulfate reducer consortium.Glob. Biogeochem. Cycles8, 451–463 (1994).

    Article  Google Scholar 

  20. Biddle, J.F. et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru.Proc. Natl Acad. Sci. USA103, 3846–3851 (2006).

    Article  Google Scholar 

  21. Amann, R. I. et al. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms.Appl. Environ. Microbiol.58, 614–623 (1992).

    Google Scholar 

  22. Teske, A. et al. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt).Appl. Environ. Microbiol.64, 2943–2951 (1998).

    Google Scholar 

  23. Muyzer, G. et al. Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments.Arch. Microbiol.164, 165–172 (1995).

    Article  Google Scholar 

  24. Wagner, M. et al. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration.J. Bacteriol.180, 2975–2982 (1998).

    Google Scholar 

  25. Lever, M. A.Anaerobic Carbon Cycling Pathways in the Deep Subseafloor Investigated via Functional Genes, Chemical Gradients, Stable Carbon Isotopes, and Thermodynamic Calculations. PhD Dissertation, Univ. North Carolina at Chapel Hill (2008).

  26. Dhillon, A. et al. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin.Appl. Environ. Microbiol.69, 2765–2772 (2003).

    Article  Google Scholar 

  27. Heuer, V. et al. Onlineδ13C analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography-isotope ratio-mass spectrometry.Limnol. Oceanogr. Meth.4, 346–357 (2006).

    Article  Google Scholar 

  28. Anderson, G. M.Thermodynamics of Natural Systems 648 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  29. McCutcheon, S. C., Martin, J. L. & Barnwell, T. O. inHandbook of Hydrology (ed. Maidment, D. R.) 11.3–11.73 (McGraw-Hill, 1993).

    Google Scholar 

  30. Gustafsson, J. P. Visual Minteq v. 2.50, revision 31/5/2006. Kungliga Tekniska Högskolan (2006); available at <http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm>.

Download references

Acknowledgements

This research was supported by the US National Science Foundation Life in Extreme Environments and Microbial Observatories programs; the National Oceanographic and Atmospheric Administration National Undersea Research Program; the Department of Energy; the American Chemical Society Petroleum Research Fund; the Environmental Protection Agency; the NASA Astrobiology Institute; and the Deutsche Forschungsgemeinschaft. We thank members of the LExEn 2002 shipboard scientific party and the ship and submersible crews from Harbor Branch Oceanographic Institution for help collecting and processing samples; Mitch Sogin and the Bay Paul Center at the Marine Biological Laboratory for efficient sequencing support; Basil Blake for paintingFig. 1; and A. Boetius, N. Finke and B. Gilhooly for providing comments that improved this manuscript.

Author information

Author notes
  1. Beth! N. Orcutt & Mark A. Lever

    Present address: Present addresses: University of Southern California, Los Angeles, California 90089, USA (B.N.O.); Center for Geomicrobiology, Biology Institute, Ny Munkegade 1540 DK-0800 Århus C, Denmark (M.A.L.),

Authors and Affiliations

  1. Department of Marine Sciences, University of Georgia, Athens, Georgia 30602-3636, USA

    Samantha B. Joye, Vladimir A. Samarkin, Beth! N. Orcutt & Christof D. Meile

  2. Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, Texas 78412, USA

    Ian R. MacDonald

  3. MARUM Center for Marine Environmental Sciences & Department of Geosciences, Organic Geochemistry Group, University of Bremen, 28334 Bremen, Germany

    Kai-Uwe Hinrichs & Marcus Elvert

  4. Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA

    Andreas P. Teske, Karen G. Lloyd & Mark A. Lever

  5. School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

    Joseph P. Montoya

Authors
  1. Samantha B. Joye

    You can also search for this author inPubMed Google Scholar

  2. Vladimir A. Samarkin

    You can also search for this author inPubMed Google Scholar

  3. Beth! N. Orcutt

    You can also search for this author inPubMed Google Scholar

  4. Ian R. MacDonald

    You can also search for this author inPubMed Google Scholar

  5. Kai-Uwe Hinrichs

    You can also search for this author inPubMed Google Scholar

  6. Marcus Elvert

    You can also search for this author inPubMed Google Scholar

  7. Andreas P. Teske

    You can also search for this author inPubMed Google Scholar

  8. Karen G. Lloyd

    You can also search for this author inPubMed Google Scholar

  9. Mark A. Lever

    You can also search for this author inPubMed Google Scholar

  10. Joseph P. Montoya

    You can also search for this author inPubMed Google Scholar

  11. Christof D. Meile

    You can also search for this author inPubMed Google Scholar

Contributions

S.B.J., V.A.S., I.R.M. and J.P.M. conceived the experiment and carried it out; K.-U.H. and M.E. completed the carbon isotopic analyses; A.P.T., K.G.L., M.A.L. and B.N.O. completed the molecular biological analyses; C.D.M. completed the thermodynamic calculations; S.B.J. wrote the paper and all authors provided editorial comments.

Corresponding authors

Correspondence toSamantha B. Joye,Beth! N. Orcutt orMark A. Lever.

Supplementary information

Supplementary Table S1

Supplementary Information (PDF 816 kb)

Rights and permissions

About this article

Cite this article

Joye, S., Samarkin, V., Orcutt, B.et al. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics.Nature Geosci2, 349–354 (2009). https://doi.org/10.1038/ngeo475

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp