Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Geoscience
  • Progress Article
  • Published:

Continental-scale temperature variability during the past two millennia

Nature Geosciencevolume 6pages339–346 (2013)Cite this article

Subjects

ACorrigendum to this article was published on 27 November 2015

AnErratum to this article was published on 30 May 2013

AnErratum to this article was published on 30 May 2013

This article has beenupdated

Abstract

Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions betweenad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the periodad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PAGES 2k Network.
Figure 2: Continental-scale temperature reconstructions.
Figure 3: Summary of long-term trends in individual site-level proxy records.
Figure 4: Composite temperature reconstructions with climate forcings and previous hemisphere-scale reconstructions.

Similar content being viewed by others

Change history

  • 26 April 2013

    In version of this Progress Article originally published, the authorship pseudonym was incorrectly stated as the PAGES 2k Network. The correct name is the PAGES 2k Consortium. This has been corrected in the PDF and HTML versions.

  • 14 May 2013

    In the version of this Progress Article originally published, incorrect references were cited in the caption of Fig. 4a. The correct reference citation should read "5,43-45". This has been corrected in the PDF and HTML versions.

  • 27 November 2015

    Since the original publication of this Progress Article, errors have been identified in the data set used for the Arctic temperature reconstruction. Corrections made to the Arctic data set are reflected in changes to this Progress Article as detailed in the associated Corrigendum (http://dx.doi.org/10.1038/ngeo2566)

References

  1. Rockström, J. et al. A safe operating space for humanity.Nature461, 472–475 (2009).

    Article  Google Scholar 

  2. Snyder, C. W. The value of paleoclimate research in our changing climate.Clim. Change100, 407–418 (2010).

    Article  Google Scholar 

  3. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data.Nature Clim. Change2, 417–424 (2012).

    Article  Google Scholar 

  4. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability.Clim. Dyn.38, 527 (2012).

    Article  Google Scholar 

  5. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia.Proc. Natl Acad. Sci. USA105, 13252–13257 (2008).

    Article  Google Scholar 

  6. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly.Science326, 1256–1260 (2009).

    Article  Google Scholar 

  7. Frank, D., Esper, J., Zorita, E. & Wilson, R. A noodle, hockey stick, and spaghetti plate: a perspective on high-resolution paleoclimatology.WIREs Clim. Change1, 507–516 (2010).

    Article  Google Scholar 

  8. Nicholson, S. E. et al. Temperature variability over Africa during the last 2000 years.The Holocenehttp://dx.doi.org/10.1177/0959683613483618 (2013).

  9. PAGES/Ocean2k Working Group. Synthesis of marine sediment-derived SST records for the past 2 millennia: First-order results from the PAGES/Ocean2k project. AGU Fall Meeting, abstr. PP11F-07 (American Geophysical Union, 2012).

  10. Christiansen, B., Schmith, T. & Thejll, P. A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness.J. Clim.22, 951–976 (2009).

    Article  Google Scholar 

  11. Esper, J. & Frank, D. C. Divergence pitfalls in tree-ring research.Clim. Change94, 261–266 (2009).

    Article  Google Scholar 

  12. Jones, P. D. & Mann, M. E. Climate over past millennia.Rev. Geophys.42, RG2002 (2004).

    Article  Google Scholar 

  13. Crowley T. J. Causes of climate change over the past 1000 years.Science289, 270–277 (2000).

    Article  Google Scholar 

  14. Bauer, E., Claussen, M., Brovkin, V. & Huenerbein, A. Assessing climate forcings of the Earth system for the past millennium.Geophys. Res. Lett.30, 1276 (2003).

    Article  Google Scholar 

  15. Hegerl, G. C. et al. inClimate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  16. Goosse, H., Crowley, T. J., Zorita, E., Ammann, C. E., Renssen, H. & Driesschaert, E. Modelling the climate of the last millennium: What causes the differences between simulations?Geophys. Res. Lett.32, L06710 (2005).

    Article  Google Scholar 

  17. Steinhilber F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.Proc. Natl Acad. Sci.109, 5967–5971 (2012).

    Article  Google Scholar 

  18. Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling.Science325, 1236–1239 (2009).

    Article  Google Scholar 

  19. Esper J. et al. Orbital forcing of tree-ring data.Nature Clim. Change2, 862–866 (2012).

    Article  Google Scholar 

  20. Renssen, H. Goosse, H., Fichefet, T., Masson-Delmotte, V. & Koç, N. The Holocene climate evolution in the high-latitude Southern Hemisphere simulated by a coupled atmosphere-sea ice-ocean-vegetation model.The Holocene15, 951–964 (2005).

    Article  Google Scholar 

  21. Fernández-Donado, L. et al. Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium.Clim. Past.9, 393–421 (2013).

    Article  Google Scholar 

  22. Goosse, H. et al. The role of forcing and internal dynamics in explaining the 'Medieval Climate Anomaly'.Clim. Dyn.39, 2847–2866 (2012).

    Article  Google Scholar 

  23. Lamb, H. H. The early medieval warm epoch and its sequel.Palaeogeogr. Palaeoclim.1, 13–37 (1965).

    Article  Google Scholar 

  24. Bradley, R. S., Hughes, M. K. & Diaz, H. F. Climate in Medieval time.Science302, 404–405 (2003).

    Article  Google Scholar 

  25. Matthews, J. A. & Briffa, K. R. The 'Little Ice Age': Re-evaluation of an evolving concept.Geogr. Ann.87A, 17–36 (2005).

    Article  Google Scholar 

  26. Ljungqvist, F. C., Krusic, P. J., Brattström, G. & Sundqvist, H. S. Northern Hemisphere temperature patterns in the last 12 centuries.Clim. Past8, 227–249 (2012).

    Article  Google Scholar 

  27. Diaz, H. F. et al. Spatial and temporal characteristics of climate in Medieval times revisited.Bull. Am. Meteorol. Soc.92, 1487–1500 (2011).

    Article  Google Scholar 

  28. Stouffer R. J., Manabe, S. & Bryan, K. Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2 .Nature342, 660–662 (1989).

    Article  Google Scholar 

  29. Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M. & Morice, C. P. Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010.J. Geophys. Res.117, D05127 (2012).

    Google Scholar 

  30. Santer, B. D. et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series.J. Geophy. Res.105, 7337–7356 (2000).

    Article  Google Scholar 

  31. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulation of the last millennium (v1.1).Geosci. Model Dev.5, 185–191 (2012).

    Article  Google Scholar 

  32. Hanhijärvi, S., Tingley, M. P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic region over the last 2000 years.Clim. Dyn.http://dx.doi.org/10.1007/s00382-013-1701-4 (2013).

  33. Büntgen, U. et al. 2500 years of European climate variability and human susceptibility.Science331, 578–582 (2011).

    Article  Google Scholar 

  34. Dobrovolný, P. et al. Monthly, seasonal and annual temperature reconstructions for central Europe derived from documentary evidence and instrumental records sinceAD 1500.Clim. Change101, 69–107 (2010).

    Article  Google Scholar 

  35. Cook, E. et al. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C. E.Clim. Dyn.http://dx.doi.org/10.1007/s00382-012-1611-x (2013).

  36. Wahl, E. R. & Smerdon, J. E. Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors.Geophys. Res. Lett.39, L06703 (2012).

    Google Scholar 

  37. Trouet, V. et al. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales.Environ. Res. Lett.http://dx.doi.org/10.1088/1748-9326/8/2/024008 (2013).

  38. Neukom, R. et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries.Clim. Dyn.37, 35–51 (2011).

    Article  Google Scholar 

  39. Neukom, R. & Gergis, J. Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years.The Holocene22, 501–524 (2011).

    Article  Google Scholar 

  40. Schneider, D. et al. Antarctic temperatures over the past two centuries from ice cores.Geophys. Res. Lett.33, L16707 (2006).

    Article  Google Scholar 

  41. Steig, E. et al. Recent climate and glacier changes in West Antarctica compared with the past 2,000 years.Nature Geosci.http://dx.doi.org/10.1038/ngeo1778 (2013).

  42. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated.J. Clim.10, 2147–2153 (1997).

    Article  Google Scholar 

  43. Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data.Nature433, 613–617 (2005).

    Article  Google Scholar 

  44. Ljungqvist, F. C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia.Geogr. Ann.92A, 339–351 (2010).

    Article  Google Scholar 

  45. Hegerl, G. C., Crowley, T. J., Hyde, W. T. & Frame, D. J. Climate sensitivity constrained by temperature reconstructions over the past seven centuries.Nature440, 1029–1032 (2006).

    Article  Google Scholar 

  46. Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models.J. Geophys. Res.-Atmos.113, D23111 (2008).

    Article  Google Scholar 

  47. Crowley, T. & Unterman, M. Technical details concerning development of a 1200-year proxy index for global volcanism.Earth Syst. Sci. Data Discuss.5, 1–28 (2012).

    Article  Google Scholar 

  48. Shapiro, A. et al. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing.Astron. Astrophys.529, A67 (2011).

    Article  Google Scholar 

  49. Vieira, L. E., Solanki, S. K., Krivov, A. V. & Usoskin, I. G. Evolution of the solar irradiance during the Holocene.Astron. Astrophys.531, A6 (2011).

    Article  Google Scholar 

  50. Berger, A. L. Long-term variation of daily insolation and Quaternary climatic change.Quat. Res.9, 139–167 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

Support for PAGES activities is provided by the US and Swiss National Science Foundations, US National Oceanographic and Atmospheric Administration and by the International Geosphere-Biosphere Programme. All maps were kindly created by Alexander Hermann, Institute of Geography, University of Bern.

Author information

Author notes
  1. Mohammed Umer: Deceased

Authors and Affiliations

  1. Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi, 75300, Pakistan

    Moinuddin Ahmed

  2. Lamont Doherty Earth Observatory, Columbia University, Palisades, 10964, New York, USA

    Kevin J. Anchukaitis, Brendan M. Buckley, Edward R. Cook & Jason E. Smerdon

  3. Woods Hole Oceanographic Institution, Woods Hole, 2543, Massachusetts, USA

    Kevin J. Anchukaitis

  4. School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia

    Asfawossen Asrat & Mohammed Umer

  5. Indian Institute of Tropical Meteorology, Pune, 411008, India

    Hemant P. Borgaonkar

  6. Dipartimento di Matematica e Geoscienze, University of Trieste, 34128, Italy

    Martina Braida & Barbara Stenni

  7. Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland

    Ulf Büntgen & Raphael Neukom

  8. Département Paléoenvironnements et Paléoclimats (PAL), Université Montpellier, Montpellier, 34095, France

    Brian M. Chase

  9. Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Bergen, 5020, Norway

    Brian M. Chase

  10. Laboratorio de Dendrocronología y Cambio Global, Universidad Austral de Chile, Casilla 567, Valdivia, Chile

    Duncan A. Christie & Antonio Lara

  11. Center for Climate and Resilience Research, Universidad de Chile, Casilla 2777, Santiago, Chile

    Duncan A. Christie & Antonio Lara

  12. Australian Antarctic Division, Kingston, 7050, Tasmania, Australia

    Mark A. J. Curran, Andrew D. Moy & Tas van Ommen

  13. Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Sandy Bay, 7005, Tasmania, Australia

    Mark A. J. Curran, Andrew D. Moy & Tas van Ommen

  14. Cooperative Institute for Research in Environmental Sciences, National Oceanic and Atmospheric Administration, Boulder, 80305, Colorado, USA

    Henry F. Diaz

  15. Department of Geography, Johannes Gutenberg University, Mainz, 55099, Germany

    Jan Esper

  16. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China

    Ze-Xin Fan

  17. Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, GPO Box 3323, Lalitpur, Nepal

    Narayan P. Gaire

  18. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China

    Quansheng Ge & Xuemei Shao

  19. School of Earth Sciences, University of Melbourne, Melbourne, 3010, Victoria, Australia

    Joëlle Gergis

  20. Departamento Astrofísica y CC de la Atmósfera, Universidad Complutense de Madrid, Madrid, 28040, Spain

    J Fidel González-Rouco

  21. Lemaitre Center for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium

    Hugues Goosse

  22. School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Wits, 2050, South Africa

    Stefan W. Grab & David J. Nash

  23. Hydrologic Research Center, San Diego, 92130, California, USA

    Nicholas Graham & Rochelle Graham

  24. Oeschger Centre for Climate Change Research & Institute of Geography, University of Bern, Bern, 3012, Switzerland

    Martin Grosjean & Heinz Wanner

  25. Department of Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland

    Sami T. Hanhijärvi & Atte A. Korhola

  26. School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, 86011, Arizona, USA

    Darrell S. Kaufman & Nicholas P. McKay

  27. International Project Office, Past Global Changes (PAGES), Bern, 3012, Switzerland

    Thorsten Kiefer & Lucien von Gunten

  28. Department of Symbiotic System Science, Fukushima University, Fukushima, 960-1248, Japan

    Katsuhiko Kimura

  29. Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, 106 91, Sweden

    Paul J. Krusic

  30. Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), Université Pierre et Marie Curie, Paris cedex, 575252, France

    Anne-Marie Lézine

  31. Department of History, Stockholm University, Stockholm, 106 91, Sweden

    Fredrik C. Ljungqvist

  32. National Institute of Water and Atmospheric Research Ltd., National Climate Centre Auckland, 1011, New Zealand

    Andrew M. Lorrey

  33. Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University, Giessen, 35390, Germany

    Jürg Luterbacher & Johannes P. Werner

  34. Laboratoire des Science du Climat et de l'Environnement, Gif-sur-Yvette, 91 191, France

    Valérie Masson-Delmotte

  35. Department of Geography, Swansea University, Swansea, SA2 8PP, UK

    Danny McCarroll & Maria R. Prieto

  36. Desert Research Institute, Nevada System of Higher Education, Reno, 89512, Nevada, USA

    Joseph R. McConnell & Michael Sigl

  37. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET-Mendoza, Mendoza, 5500, Argentina

    Mariano S. Morales, Ignacio A. Mundo & Ricardo Villalba

  38. British Antarctic Survey, Cambridge, CB3 0ET, UK

    Robert Mulvaney

  39. Department of Earth and Environmental Sciences, Nagoya University, Nagoya, 464.8601, Japan

    Takeshi Nakatsuka & Masaki Sano

  40. School of Environment and Technology, University of Brighton, Brighton, BN2 4GJ, UK

    David J. Nash

  41. Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, 32308, Florida, USA

    Sharon E. Nicholson

  42. Department of Glaciology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, Bremerhaven, 27570, Germany

    Hans Oerter

  43. College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK

    Jonathan G. Palmer

  44. Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia

    Jonathan G. Palmer, Steven J. Phipps & Chris S.M. Turney

  45. ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, 2052, NSW, Australia

    Steven J. Phipps

  46. Centro de Estudios Cientificos, Valdivia, Chile

    Andres Rivera

  47. Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, 50019, Italy

    Mirko Severi

  48. Jackson School of Geosciences, University of Texas at Austin, Austin, 78712, Texas, USA

    Timothy M. Shanahan

  49. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Feng Shi

  50. Institute of Geography, Russian Academy of Sciences, Moscow, 119017, Russia

    Olga N. Solomina

  51. Department of Earth and Space Sciences, University of Washington, Seattle, 98195, Washington, USA

    Eric J. Steig

  52. National Centre for Antarctic and Ocean Research, Goa, 403 804, India

    Meloth Thamban

  53. Laboratory of Tree-Ring Research, University of Arizona, Tucson, 85721, Arizona, USA

    Valerie Trouet

  54. Department of Biology, Ghent University, Ghent, 9000, Belgium

    Dirk Verschuren

  55. Department of Geography, University of Ottawa, Ottawa, K1N 6N5, Canada

    Andre E. Viau

  56. Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark

    Bo M. Vinther

  57. Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany

    Sebastian Wagner & Eduardo Zorita

  58. National Climatic Data Center, National Oceanic and Atmospheric Administration, Boulder, 80305, Colorado, USA

    Eugene R. Wahl

  59. Institute of Arctic and Alpine Research, University of Colorado, Boulder, 80309, Colorado, USA

    James W.C. White

  60. Department of Forest Science, Shinshu University, Nagano, 399-4598, Japan

    Koh Yasue

Consortia

PAGES 2k Consortium

  • Moinuddin Ahmed
  • , Kevin J. Anchukaitis
  • , Asfawossen Asrat
  • , Hemant P. Borgaonkar
  • , Martina Braida
  • , Brendan M. Buckley
  • , Ulf Büntgen
  • , Brian M. Chase
  • , Duncan A. Christie
  • , Edward R. Cook
  • , Mark A. J. Curran
  • , Henry F. Diaz
  • , Jan Esper
  • , Ze-Xin Fan
  • , Narayan P. Gaire
  • , Quansheng Ge
  • , Joëlle Gergis
  • , J Fidel González-Rouco
  • , Hugues Goosse
  • , Stefan W. Grab
  • , Nicholas Graham
  • , Rochelle Graham
  • , Martin Grosjean
  • , Sami T. Hanhijärvi
  • , Darrell S. Kaufman
  • , Thorsten Kiefer
  • , Katsuhiko Kimura
  • , Atte A. Korhola
  • , Paul J. Krusic
  • , Antonio Lara
  • , Anne-Marie Lézine
  • , Fredrik C. Ljungqvist
  • , Andrew M. Lorrey
  • , Jürg Luterbacher
  • , Valérie Masson-Delmotte
  • , Danny McCarroll
  • , Joseph R. McConnell
  • , Nicholas P. McKay
  • , Mariano S. Morales
  • , Andrew D. Moy
  • , Robert Mulvaney
  • , Ignacio A. Mundo
  • , Takeshi Nakatsuka
  • , David J. Nash
  • , Raphael Neukom
  • , Sharon E. Nicholson
  • , Hans Oerter
  • , Jonathan G. Palmer
  • , Steven J. Phipps
  • , Maria R. Prieto
  • , Andres Rivera
  • , Masaki Sano
  • , Mirko Severi
  • , Timothy M. Shanahan
  • , Xuemei Shao
  • , Feng Shi
  • , Michael Sigl
  • , Jason E. Smerdon
  • , Olga N. Solomina
  • , Eric J. Steig
  • , Barbara Stenni
  • , Meloth Thamban
  • , Valerie Trouet
  • , Chris S.M. Turney
  • , Mohammed Umer
  • , Tas van Ommen
  • , Dirk Verschuren
  • , Andre E. Viau
  • , Ricardo Villalba
  • , Bo M. Vinther
  • , Lucien von Gunten
  • , Sebastian Wagner
  • , Eugene R. Wahl
  • , Heinz Wanner
  • , Johannes P. Werner
  • , James W.C. White
  • , Koh Yasue
  •  & Eduardo Zorita

Contributions

Writing teamg: D.S.K. led the synthesis; N.P.McK., E.Z. & S.T.H. performed the synthesis analyses; D.S.K., R.N., L.v.G., T.K., H.G., H.W., C.S.M.T., F.C.L., V.M-D., E.R.W., & T.v.O. prepared the manuscript.Africa: D.J.N., A.A., B.M.C., S.W.G., S.E.N., T.M.S, D.V., A-M.L., M.U. compiled and evaluated the proxy data.Antarctica: T.v.O, M.B., A.D.M., R.M., H.O., M.Se., B.S., E.J.S., M.T., J.W.C.W., M.A.J.C., J.R.McC., M.Si. & B.M.V. provided proxy data, contributed to their dating and interpretation; M.A.J.C., J.R.McC., M.Si. & B.M.V. correlated volcanic markers; T.v.O & R.N. produced the reconstruction; M.A.J.C. managed the data.Arctic: A.A.K., D.S.K. & S.T.H. coordinated the study. S.T.H, D.S.K. & F.C.L. collected and reviewed the proxy data; S.T.H. calculated the reconstruction and managed data.Asia: M.A., K.J.A., H.P.B., B.M.B.,Q.G., E.R.C., Z.F., N.P.G., K.K., P.J.K., T.N., J.G.P., M.Sa., X.S., O.N.S. & K.Y. contributed, collected and analysed the proxy data; K.J.A., B.M.B., E.R.C. & P.J.K. performed the reconstruction; T.N., M.Sa. & F.S. provided technical support and managed the data.Australasia: J.G., A.M.L., S.J.P. & R.N. coordinated the study. R.N. & J.G. collated, managed and analysed the proxy data; R.N. & J.G. developed the reconstruction with input from S.J.P.Europe: U.B., J.E., S.W., E.Z., D.McC., F.J.G.-R., F.C.L., J.E.S., J.P.W. & J.L. collected, reviewed and analysed the proxy records, and provided input in the analysis and interpretation of the European reconstruction; S.W. managed the data; J.P.W. & J.E.S. produced the reconstruction.North America: H.F.D., E.R.W., V.T., R.G., N.G. & A.E.V. designed the study, analysed the data, and produced the reconstructions; E.R.W. & A.E.V. collected and archived the data.South America: R.V. & M.G. coordinated the study; R.V., D.A.C, A.L., I.A.M., M.S.M., L.v.G., M.R.P. & A.R. provided proxy data; R.N. calculated the reconstruction; R.N. & I.A.M. managed the data. All authors reviewed the manuscript.

Corresponding author

Correspondence toDarrell S. Kaufman.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Supplementary information

Continental-scale temperature variability during the last two millennia (PDF 6807 kb)

Database S1

Supplementary information (XLSX 5284 kb)

Database S2

Supplementary information (XLSX 2472 kb)

Rights and permissions

About this article

Cite this article

PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia.Nature Geosci6, 339–346 (2013). https://doi.org/10.1038/ngeo1797

Download citation

Access through your institution
Buy or subscribe

Associated content

Focus

10th Anniversary Focus

An extended Arctic proxy temperature database for the past 2,000 years

  • Nicholas P. McKay
  • Darrell S. Kaufman
Scientific DataData DescriptorOpen Access

Regional climate goes global

  • Helen McGregor
Nature GeoscienceNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing Anthropocene

Sign up for theNature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: Anthropocene

[8]ページ先頭

©2009-2025 Movatter.jp