- Article
- Published:
Stepwise transition from the Eocene greenhouse to the Oligocene icehouse
- Miriam E. Katz1,2,
- Kenneth G. Miller2,
- James D. Wright2,
- Bridget S. Wade3,4,
- James V. Browning2,
- Benjamin S. Cramer5 &
- …
- Yair Rosenthal2,3
Nature Geosciencevolume 1, pages329–334 (2008)Cite this article
3053Accesses
258Citations
28Altmetric
Abstract
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable ‘icehouse’ climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene–Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific))δ18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were∼25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene.Science309, 600–603 (2005).
Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion.Paleoceanography2, 1–19 (1987).
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate change 65 Ma to present.Science292, 686–293 (2001).
Kennett, J. P. Cenozoic evolution of antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global paleoceanography.J. Geophys. Res.82, 3843–3860 (1977).
Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion.J. Geophys. Res.96, 6829–6848 (1991).
Miller, K. G. et al. The phanerozoic record of global sea-level change.Science310, 1293–1298 (2005).
Zachos, J. C., Quinn, T. M. & Salamy, S. High resolution (104 yr) deep-sea foraminiferal stable isotope records of the earliest Oligocene climate transition.Paleoceanography9, 353–387 (1996).
Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.Nature433, 53–57 (2005).
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition.Geology36, 251–254 (2008).
Browning, J. V., Miller, K. G. & Pak, D. K. Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain; the icehouse cometh.Geology24, 639–642 (1996).
Sagnotti, L., Florindo, F., Verosub, K. L., Wilson, G. S. & Roberts, A. P. Environmental magnetic record of Antarctic palaeoclimate from Eocene/Oligocene glaciomarine sediments, Victoria Land Basin.Geophys. J. Int.134, 653–662 (1998).
Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes.Nature436, 341–346 (2005).
Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world.Mar. Geol.217, 215–231 (2005).
Prothero, D. R., Ivany, L. C. & Nesbitt, E. A. (eds)From Greenhouse to Icehouse: The Marine Eocene–Oligocene Transition (Columbia Univ. Press, New York, 2003).
Pearson, P. N. et al. Extinction and environmental change across the Eocene–Oligocene boundary in Tanzania.Geology36, 179–182 (2008).
Kennett, J. P. & Shackleton, N. J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago.Nature260, 513–515 (1976).
Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle.Paleoceanography19doi:10.1029/2004PA001039 (2004).
Miller, K. G. et al. Eocene–Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama.GSA Bull.12, 34–53 (2008).
Tauxe, L. P. & Hartl, P. 11 million years of Oligocene geomagnetic field behavior.Geophys. J. Int.128, 217–229 (1997).
Miller, K. G., Feigenson, M. D., Kent, D. V. & Olsson, R. K. Oligocene stable isotope (87Sr/86Sr, d18O, d13C) standard section, Deep Sea Drilling Project Site 522.Paleoceanography3, 223–233 (1988).
Zachos, J. C., Breza, J. & Wise, S. W. Jr. Early Oligocene ice-sheet expansion on Antarctica, sedimentological and isotopic evidence from Kerguelen Plateau.Geology20, 569–573 (1992).
Miller, K. G., Thompson, P. R. & Kent, D. V. Integrated stratigraphy of the Alabama coastal plain: Relationship of upper Eocene to Oligocene unconformities to glacioeustatic change.Paleoceanography8, 313–331 (1993).
Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite.Science287, 269–272 (2000).
Billups, K. & Schrag, D. P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change.Earth Planet. Sci. Lett.209, 181–195 (2003).
van Andel, T. H. & Moore, T. C. Jr. Cenozoic calcium carbonate distribution and calcite compensation depth in the central equatorial Pacific.Geology2, 87–92 (1974).
Dupont-Nivet, G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition.Nature445, 635–638 (2007).
Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, J., O. Large temperature drop across the Eocene–Oligocene transition in central North America.Nature445, 639–642 (2007).
Kominz, M. A. & Pekar, S. F. Oligocene eustasy from two-dimensional sequence stratigraphic backstripping.Geol. Soc. Am. Bull.113, 291–314 (2001).
Levitus, S.NOAA Professional Paper 13 (US Government Printing Office, Washington, 1982).
Conkright, M. E. et al.World Ocean Atlas: Nutrient and Chlorophyll of the Atlantic Ocean (US Government Printing Office, Washington, 1998).
Kobashi, T., Grossman, E. L., Dockery, D. T. III & Ivany, L. C. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA).Paleoceanography19doi:10.1029/2003PA000934 (2004).
<http://www7300.nrlssc.navy.mil/altimetry/regions/reg_gom.html>, NRLSSC.
Brinkhuis, H. & Visscher, H. inGeochronology, Timescales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 295–304 (Society of Economic Paleontologists and Mineralogists, 1995).
Fairbanks, R. G. & Matthews, R. K. The marine oxygen isotopic record in Pleistocene coral, Barbados, West Indies.Quat. Res.10, 181–196 (1978).
Pekar, S. F., Christie-Blick, N., Kominz, M. A. & Miller, K. G. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene.Geology30, 903–906 (2002).
Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period.Science291, 109–112 (2001).
Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region.Nature307, 620–623 (1984).
Williams, R. S. Jr & Ferrigno, J. G. (eds)Satellite Image Atlas of Glaciers of the World (US Geological Survey Professional Paper, Vol. 1386-C, 1999).
White, T., González, L., Ludvigson, G. & Poulsen, C. Middle Cretaceous greenhouse hydrologic cycle of North America.Geology29, 363–366 (2001).
De Conto, R. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 .Nature421, 245–249 (2003).
Pälike, H. et al. The heartbeat of the Oligocene climate system.Science314, 1894–1898 (2006).
Wade, B. S. & Pälike, H. Oligocene climate dynamics.Paleoceanography19doi:10.1029/2004PA001042 (2004).
Pekar, S. F., DeConto, R. M. & Harwood, D. M. Resolving a Late Oligocene conundrum: Deep-sea warming and Antarctic glaciation.Palaeogeogr. Palaeoclimatol. Palaeoecol.231, 29–40 (2006).
Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate–water isotopic temperature scale.Geol. Soc. Am. Bull.64, 1315–1326 (1953).
Katz, M. E. et al. Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors.Paleoceanography18 (2003).
Shackleton, N. J., Hall, M. A. & Boersma, A. Jr. inInit. Repts. DSDP (eds Moore, T. C. & Rabinowitz, P. D.) 599–612 (1984).
Coplen, T. B. Discontinuance of SMOW and PDB.Nature375, 285 (1995).
Lear, C., Rosenthal, Y. & Slowey, N. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration.Geochim. Cosmochim. Acta66, 3375–3387 (2002).
Wilkinson, B. H. & Algeo, T. J. Sedimentary carbonate record of calcium–magnesium cycling.Am. J. Sci.289, 1158–1194 (1989).
Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. inGeochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology (eds Berggren, W. A., Kent, D. V. & Hardenbol, J.) 129–212 (SEPM (Society for Sedimentary Geology), Tulsa, 1995).
Acknowledgements
This research was supported by NSF grants OCE 06-23256 (M.E.K., K.G.M., B.S.W., J.D.W.), EAR03-07112 (K.G.M.) and EAR05-06720 (K.G.M.).
Author information
Authors and Affiliations
Department of Earth and Environmental Science, Rensselaer Polytechnic Inst., Troy, New York 12180, USA
Miriam E. Katz
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey 08854, USA
Miriam E. Katz, Kenneth G. Miller, James D. Wright, James V. Browning & Yair Rosenthal
Institute of Marine and Coastal Science, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey 08901, USA
Bridget S. Wade & Yair Rosenthal
Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77840, USA
Bridget S. Wade
Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA
Benjamin S. Cramer
- Miriam E. Katz
Search author on:PubMed Google Scholar
- Kenneth G. Miller
Search author on:PubMed Google Scholar
- James D. Wright
Search author on:PubMed Google Scholar
- Bridget S. Wade
Search author on:PubMed Google Scholar
- James V. Browning
Search author on:PubMed Google Scholar
- Benjamin S. Cramer
Search author on:PubMed Google Scholar
- Yair Rosenthal
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toMiriam E. Katz.
Supplementary information
Supplementary Information
Supplementary figures S1 and tables S1-S2 (PDF 172 kb)
Rights and permissions
About this article
Cite this article
Katz, M., Miller, K., Wright, J.et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse.Nature Geosci1, 329–334 (2008). https://doi.org/10.1038/ngeo179
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition
- Marcelo A. De Lira Mota
- Tom Dunkley Jones
- James Bendle
Nature Communications (2023)
Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China
- Jinqi Qiao
- Qingyong Luo
- Zhenxue Jiang
Frontiers of Earth Science (2023)
Deep-sea benthic foraminiferal response to the early Oligocene cooling: a study from the Southern Ocean ODP Hole 1138A
- Rakesh Kumar
- Dharmendra Pratap Singh
- Abhayanand Singh Maurya
Geo-Marine Letters (2023)
60 million years of glaciation in the Transantarctic Mountains
- Iestyn D. Barr
- Matteo Spagnolo
- Matt D. Tomkins
Nature Communications (2022)
Magnetostratigraphic evidence for post-depositional distortion of osmium isotopic records in pelagic clay and its implications for mineral flux estimates
- Yoichi Usui
- Toshitsugu Yamazaki
Earth, Planets and Space (2021)


