- Article
- Published:
The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells
- Yuin-Han Loh1,2 na1,
- Qiang Wu1 na1,
- Joon-Lin Chew1,2 na1,
- Vinsensius B Vega3,
- Weiwei Zhang1,2,
- Xi Chen1,2,
- Guillaume Bourque3,
- Joshy George3,
- Bernard Leong3,
- Jun Liu4,
- Kee-Yew Wong5,
- Ken W Sung3,
- Charlie W H Lee3,
- Xiao-Dong Zhao4,
- Kuo-Ping Chiu3,
- Leonard Lipovich3,
- Vladimir A Kuznetsov3,
- Paul Robson2,5,
- Lawrence W Stanton5,
- Chia-Lin Wei4,
- Yijun Ruan4,
- Bing Lim5,6 &
- …
- Huck-Hui Ng1,2
Nature Geneticsvolume 38, pages431–440 (2006)Cite this article
21kAccesses
30Altmetric
Abstract
Oct4 and Nanog are transcription factors required to maintain the pluripotency and self-renewal of embryonic stem (ES) cells. Using the chromatin immunoprecipitation paired-end ditags method, we mapped the binding sites of these factors in the mouse ES cell genome. We identified 1,083 and 3,006 high-confidence binding sites for Oct4 and Nanog, respectively. Comparative location analyses indicated that Oct4 and Nanog overlap substantially in their targets, and they are bound to genes in different configurations. Usingde novo motif discovery algorithms, we defined thecis-acting elements mediating their respective binding to genomic sites. By integrating RNA interference–mediated depletion of Oct4 and Nanog with microarray expression profiling, we demonstrated that these factors can activate or suppress transcription. We further showed that common core downstream targets are important to keep ES cells from differentiating. The emerging picture is one in which Oct4 and Nanog control a cascade of pathways that are intricately connected to govern pluripotency, self-renewal, genome surveillance and cell fate determination.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
Accession codes
References
Smith, A.G. Embryo-derived stem cells: of mice and men.Annu. Rev. Cell Dev. Biol.17, 435–462 (2001).
Pera, M.F., Reubinoff, B. & Trounson, A. Human embryonic stem cells.J. Cell Sci.113, 5–10 (2000).
Donovan, P.J. & Gearhart, J. The end of the beginning for pluripotent stem cells.Nature414, 92–97 (2001).
Loebel, D.A., Watson, C.M., De Young, R.A. & Tam, P.P. Lineage choice and differentiation in mouse embryos and embryonic stem cells.Dev. Biol.264, 1–14 (2003).
Scholer, H.R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4.Nature344, 435–439 (1990).
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Cell95, 379–391 (1998).
Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.Nat. Genet.24, 372–376 (2000).
Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function.Genes Dev.17, 126–140 (2003).
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Cell113, 643–655 (2003).
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell113, 631–642 (2003).
Pesce, M. & Scholer, H.R.Oct-4: gatekeeper in the beginnings of mammalian development.Stem Cells19, 271–278 (2001).
Chambers, I. & Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene23, 7150–7160 (2004).
Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation.Nat. Methods2, 105–111 (2005).
Wei, C.L. et al. A global map of p53 transcription-factor binding sites in the human genome.Cell124, 207–219 (2006).
Chew, J.L. et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells.Mol. Cell. Biol.25, 6031–6046 (2005).
Mi, H. et al. The PANTHER database of protein families, subfamilies, functions and pathways.Nucleic Acids Res.33, D284–D288 (2005).
Yeom, Y.I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells.Development122, 881–894 (1996).
Pavesi, G., Mauri, G. & Pesole, G. An algorithm for finding signals of unknown length in unaligned DNA sequences.Bioinformatics17 (Suppl.), 207–214 (2001).
Down, T.A. & Hubbard, T.J. NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequence.Nucleic Acids Res.33, 1445–1453 (2005).
Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells.Cell122, 947–956 (2005).
Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism.Development132, 885–896 (2005).
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs.Cell116, 499–509 (2004).
Kim, T.H. et al. A high-resolution map of active promoters in the human genome.Nature436, 876–880 (2005).
Pollack, J.R. & Iyer, V.R. Characterizing the physical genome.Nat. Genet.32, 515–521 (2002).
Buck, M.J. & Lieb, J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments.Genomics83, 349–360 (2004).
Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions.Cell119, 1041–1054 (2004).
Kim, J., Bhinge, A.A., Morgan, X.C. & Iyer, V.R. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.Nat. Methods2, 47–53 (2005).
Rodda, D.J. et al. Transcriptional regulation of nanog by OCT4 and SOX2.J. Biol. Chem.280, 24731–24737 (2005).
Kuroda, T. et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression.Mol. Cell. Biol.25, 2475–2485 (2005).
Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells.J. Biol. Chem.280, 5307–5317 (2005).
Ambrosetti, D.C., Scholer, H.R., Dailey, L. & Basilico, C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer.J. Biol. Chem.275, 23387–23397 (2000).
Tokuzawa, Y. et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development.Mol. Cell. Biol.23, 2699–2708 (2003).
Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2.Mol. Cell. Biol.19, 5453–5465 (1999).
Kornberg, T.B. Understanding the homeodomain.J. Biol. Chem.268, 26813–26816 (1993).
Affolter, M., Schier, A. & Gehring, W.J. Homeodomain proteins and the regulation of gene expression.Curr. Opin. Cell Biol.2, 485–495 (1990).
Brandenberger, R. et al. MPSS profiling of human embryonic stem cells.BMC Dev. Biol.4, 10 (2004).
Wei, C.L. et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state.Stem Cells23, 166–185 (2005).
Martone, R. et al. Distribution of NF-kappaB-binding sites across human chromosome 22.Proc. Natl. Acad. Sci. USA100, 12247–12252 (2003).
Hanna, L.A., Foreman, R.K., Tarasenko, I.A., Kessler, D.S. & Labosky, P.A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo.Genes Dev.16, 2650–2661 (2002).
Guo, Y. et al. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression.Proc. Natl. Acad. Sci. USA99, 3663–3667 (2002).
Dodge, J.E., Kang, Y.K., Beppu, H., Lei, H. & Li, E. Histone H3–K9 methyltransferase ESET is essential for early development.Mol. Cell. Biol.24, 2478–2486 (2004).
Luo, J. et al. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta.Nature388, 778–782 (1997).
Mitsunaga, K. et al. Loss of PGC-specific expression of the orphan nuclear receptor ERR-beta results in reduction of germ cell number in mouse embryos.Mech. Dev.121, 237–246 (2004).
Adams, I.R. & McLaren, A. Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells.Dev. Dyn.229, 733–744 (2004).
Xu, L. & Blackburn, E.H. Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules.J. Cell Biol.167, 819–830 (2004).
Silverman, J., Takai, H., Buonomo, S.B., Eisenhaber, F. & de Lange, T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint.Genes Dev.18, 2108–2119 (2004).
Acknowledgements
We are grateful to the Biomedical Research Council (BMRC) and Agency for Science, Technology and Research (A*STAR) for funding. Y.-H.L is supported by the A*STAR graduate scholarship. J.-L.C is supported by the Singapore Millennium Foundation graduate scholarship. W.Z. and X.C. are supported by the National University of Singapore graduate scholarship. B.L. is partially supported by grants from the US National Institutes of Health (DK47636 and AI54973). We thank E. Cheung, T. Lufkin, N. Clarke, C.-A. Lim, P. Melamed and J. Buhlman for critical comments on the manuscript. We are grateful to E. Ng, A. Ang and Y.-C. Chong for assistance in annotating the binding sites.
Author information
Yuin-Han Loh, Qiang Wu and Joon-Lin Chew: These authors contributed equally to this work.
Authors and Affiliations
Gene Regulation Laboratory, Genome Institute of Singapore, 138672, Singapore
Yuin-Han Loh, Qiang Wu, Joon-Lin Chew, Weiwei Zhang, Xi Chen & Huck-Hui Ng
Department of Biological Sciences, National University of Singapore, 117543, Singapore
Yuin-Han Loh, Joon-Lin Chew, Weiwei Zhang, Xi Chen, Paul Robson & Huck-Hui Ng
Information & Mathematical Sciences Group, Genome Institute of Singapore, 138672, Singapore
Vinsensius B Vega, Guillaume Bourque, Joshy George, Bernard Leong, Ken W Sung, Charlie W H Lee, Kuo-Ping Chiu, Leonard Lipovich & Vladimir A Kuznetsov
Cloning and Sequencing Group, Genome Institute of Singapore, 138672, Singapore
Jun Liu, Xiao-Dong Zhao, Chia-Lin Wei & Yijun Ruan
Stem Cell & Developmental Biology, Genome Institute of Singapore, 138672, Singapore
Kee-Yew Wong, Paul Robson, Lawrence W Stanton & Bing Lim
Harvard Institutes of Medicine, Harvard Medical School, Boston, 02115, Massachusetts, USA
Bing Lim
- Yuin-Han Loh
You can also search for this author inPubMed Google Scholar
- Qiang Wu
You can also search for this author inPubMed Google Scholar
- Joon-Lin Chew
You can also search for this author inPubMed Google Scholar
- Vinsensius B Vega
You can also search for this author inPubMed Google Scholar
- Weiwei Zhang
You can also search for this author inPubMed Google Scholar
- Xi Chen
You can also search for this author inPubMed Google Scholar
- Guillaume Bourque
You can also search for this author inPubMed Google Scholar
- Joshy George
You can also search for this author inPubMed Google Scholar
- Bernard Leong
You can also search for this author inPubMed Google Scholar
- Jun Liu
You can also search for this author inPubMed Google Scholar
- Kee-Yew Wong
You can also search for this author inPubMed Google Scholar
- Ken W Sung
You can also search for this author inPubMed Google Scholar
- Charlie W H Lee
You can also search for this author inPubMed Google Scholar
- Xiao-Dong Zhao
You can also search for this author inPubMed Google Scholar
- Kuo-Ping Chiu
You can also search for this author inPubMed Google Scholar
- Leonard Lipovich
You can also search for this author inPubMed Google Scholar
- Vladimir A Kuznetsov
You can also search for this author inPubMed Google Scholar
- Paul Robson
You can also search for this author inPubMed Google Scholar
- Lawrence W Stanton
You can also search for this author inPubMed Google Scholar
- Chia-Lin Wei
You can also search for this author inPubMed Google Scholar
- Yijun Ruan
You can also search for this author inPubMed Google Scholar
- Bing Lim
You can also search for this author inPubMed Google Scholar
- Huck-Hui Ng
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toYijun Ruan orHuck-Hui Ng.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figure 1
Validation of Oct4 ChIP-PET data by real-time PCR. (PDF 26 kb)
Supplementary Figure 2
Profiles of Oct4 binding as shown by by ChIP-PET. (PDF 38 kb)
Supplementary Figure 3
Validation of Nanog ChIP-PET data by real-time PCR. (PDF 27 kb)
Supplementary Figure 4
Validation of ChIP-PET data with epitope-tagged Nanog. (PDF 27 kb)
Supplementary Figure 5
Validation of Nanog binding profiles atPou5f1,Sox2 andNanog upstream regulatory regions. (PDF 57 kb)
Supplementary Figure 6
Co-occupancies of Oct4 and Sox2 on target sites. (PDF 38 kb)
Supplementary Figure 7
Binding of Nanog to DNA containing CATT motifs. (PDF 37 kb)
Supplementary Figure 8
Rescue experiments demonstrate the specificity of thePou5f1 RNAi results. (PDF 69 kb)
Supplementary Figure 9
Specificity ofNanog siRNA. (PDF 107 kb)
Supplementary Figure 10
Locations of ChIP-PET clusters relative to genes that are differentially expressed afterPou5f1 orNanog RNAi knockdown. (PDF 23 kb)
Supplementary Figure 11
Characterization of Nanog-overexpressing ES cell line. (PDF 100 kb)
Supplementary Figure 12
ES cells expressing scrambledEsrrb orRif1 siRNA sequences retained non-differentiated cell morphology. (PDF 63 kb)
Supplementary Table 1
Coordinates of loci for validation of Oct4 binding. (XLS 41 kb)
Supplementary Table 2
Coordinates of Oct4 and Nanog binding loci and their associated genes. (XLS 2890 kb)
Supplementary Table 3
Common genes that are bound by both Oct4 and Nanog. (XLS 180 kb)
Supplementary Table 4
Differentiation profiles of ES cells (data set for Fig. 5). (XLS 9944 kb)
Supplementary Table 5
Differentially expressed genes afterPou5f1 orNanog RNAi (data sets for Figs. 6a,b). (XLS 2096 kb)
Supplementary Table 6
List of differentially expressed genes bound by Oct4 or Nanog (data set for Fig. 6c). (XLS 266 kb)
Supplementary Table 7
Mouse and human targets: location comparison. (XLS 255 kb)
Rights and permissions
About this article
Cite this article
Loh, YH., Wu, Q., Chew, JL.et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.Nat Genet38, 431–440 (2006). https://doi.org/10.1038/ng1760
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative