Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

A negative element inSMN2 exon 7 inhibits splicing in spinal muscular atrophy

Nature Geneticsvolume 34pages460–463 (2003)Cite this article

Abstract

Spinal muscular atrophy (SMA) is a relatively common neurodegenerative disease caused by homozygous loss of the survival motor neuron 1 (SMN1) gene1. Humans possess a linked, nearly identical gene,SMN2, which produces a functional SMN protein but at levels insufficient to compensate for loss ofSMN1 (refs.1,2). A C/T transition at position +6 in exon 7 is all that differentiates the two genes, but this is sufficient to prevent efficient exon 7 splicing inSMN2 (refs.2,3). Here we show that the C/T transition functions not to disrupt an exonic splicing enhancer (ESE) inSMN1 (ref.4), as previously suggested, but rather to create an exonic splicing silencer (ESS) inSMN2. We show that this ESS functions as a binding site for a known repressor protein, hnRNP A1, which binds toSMN2 but notSMN1 exon 7 RNA. We establish the physiological importance of these results by using small interfering RNAs to reduce hnRNP A protein levels in living cells and show that this results in efficientSMN2 exon 7 splicing. Our findings not only define a new mechanism underlying the inefficient splicing ofSMN2 exon 7 but also illustrate more generally the remarkable sensitivity and precision that characterizes control of mRNA splicing.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASF/SF2 does not have an essential role inSMN exon 7 splicing.
Figure 2: The C→U transition inSMN2 creates a sequence with properties of an hnRNP A1–dependent ESS.
Figure 3:In vivo depletion of hnRNP A1 or A2 proteins by RNA interference restores SMN2 exon 7 inclusion.
Figure 4: Model for regulation of exon 7 splicing inSMN1 andSMN2 precursor mRNAs.

Similar content being viewed by others

ArticleOpen access12 June 2020

References

  1. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene.Cell80, 155–165 (1995).

    Article CAS  Google Scholar 

  2. Monani, U.R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA geneSMN1 from the copy geneSMN2.Hum. Mol. Genet.8, 1177–1183 (1999).

    Article CAS  Google Scholar 

  3. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in theSMN gene regulates splicing and is responsible for spinal muscular atrophy.Proc. Natl. Acad. Sci. USA96, 6307–6311 (1999).

    Article CAS  Google Scholar 

  4. Cartegni, L. & Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer inSMN2 causes spinal muscular atrophy in the absence ofSMN1.Nat. Genet.30, 377–384 (2002).

    Article CAS  Google Scholar 

  5. Lorson, C.L. & Androphy, E.J. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining geneSMN.Hum. Mol. Genet.9, 259–265 (2000).

    Article CAS  Google Scholar 

  6. Hofmann, Y., Lorson, C.L., Stamm, S., Androphy, E.J. & Wirth, B. Htra2-β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2).Proc. Natl. Acad. Sci. USA97, 9618–9623 (2000).

    Article CAS  Google Scholar 

  7. Tacke, R., Tohyama, M., Ogawa, S. & Manley, J.L. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing.Cell93, 139–148 (1998).

    Article CAS  Google Scholar 

  8. Manley, J.L. & Tacke, R. SR proteins and splicing control.Genes Dev.10, 1569–1579 (1996).

    Article CAS  Google Scholar 

  9. Caceres, J.F., Stamm, S., Helfman, D.M. & Krainer, A.R. Regulation of alternative splicingin vivo by overexpression of antagonistic splicing factors.Science265, 1706–1709 (1994).

    Article CAS  Google Scholar 

  10. Wang, J. & Manley, J.L. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicingin vivo in diverse ways.RNA1, 335–346 (1995).

    CAS PubMed PubMed Central  Google Scholar 

  11. Wang, J., Takagaki, Y. & Manley, J.L. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability.Genes Dev.10, 2588–2599 (1996).

    Article CAS  Google Scholar 

  12. Wang, J., Xiao, S.H. & Manley, J.L. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing.Genes Dev.12, 2222–2233 (1998).

    Article CAS  Google Scholar 

  13. Caputi, M., Mayeda, A., Krainer, A.R. & Zahler, A.M. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing.EMBO J.18, 4060–4067 (1999).

    Article CAS  Google Scholar 

  14. Del Gatto-Konczak, F., Olive, M., Gesnel, M.C. & Breathnach, R. hnRNP A1 recruited to an exonin vivo can function as an exon splicing silencer.Mol. Cell. Biol.19, 251–260 (1999).

    Article CAS  Google Scholar 

  15. Matter, N. et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways.J. Biol. Chem.275, 35353–35360 (2000).

    Article CAS  Google Scholar 

  16. Hou, V.C. et al. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch.EMBO J.21, 6195–6204 (2002).

    Article CAS  Google Scholar 

  17. Burd, C.G. & Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing.EMBO J.13, 1197–1204 (1994).

    Article CAS  Google Scholar 

  18. Bilodeau, P.S., Domsic, J.K., Mayeda, A., Krainer, A.R. & Stoltzfus, C.M. RNA splicing at human immunodeficiency virus type 1 3′ splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element.J. Virol.75, 8487–8497 (2001).

    Article CAS  Google Scholar 

  19. Mayeda, A., Munroe, S.H., Caceres, J.F. & Krainer, A.R. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins.EMBO J.13, 5483–5495 (1994).

    Article CAS  Google Scholar 

  20. Hutchison, S., LeBel, C., Blanchette, M. & Chabot, B. Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5′ splice site selection in the hnRNP A1 mRNA precursor.J. Biol. Chem.277, 29745–29752 (2002).

    Article CAS  Google Scholar 

  21. Hofmann, Y. & Wirth, B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-β1.Hum. Mol. Genet.11, 2037–2049 (2002).

    Article CAS  Google Scholar 

  22. Young, P.J. et al. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 β1.Hum. Mol. Genet.11, 577–587 (2002).

    Article CAS  Google Scholar 

  23. Tange, T.O., Damgaard, C.K., Guth, S., Valcarcel, J. & Kjems, J. The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element.EMBO J.20, 5748–5758 (2001).

    Article CAS  Google Scholar 

  24. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing.Nat. Rev. Genet.3, 285–298 (2002).

    Article CAS  Google Scholar 

  25. Tacke, R. & Manley, J.L. Determinants of SR protein specificity.Curr. Opin. Cell Biol.11, 358–362 (1999).

    Article CAS  Google Scholar 

  26. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry.Nat. Rev. Mol. Cell Biol.3, 195–205 (2002).

    Article CAS  Google Scholar 

  27. Wilkinson, M.F. & Shyu, A.B. RNA surveillance by nuclear scanning?Nat. Cell Biol.4, E144–E147 (2002).

    Article CAS  Google Scholar 

  28. Tacke, R. & Manley, J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities.EMBO J.14, 3540–3551 (1995).

    Article CAS  Google Scholar 

  29. Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme.Proc. Natl. Acad. Sci. USA94, 4262–4266 (1997).

    Article CAS  Google Scholar 

  30. Elbashir, S.M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs.Methods26, 199–213 (2002).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Takebayashi for technical assistance, C.L. Lorson for advice on cloningSMN1 andSMN2 minigene constructs, R. Tacke for providing human Tra2α and Tra2β cDNAs, H.J. Okano for mouse HuD cDNA, J. Kohtz for antibodies to ASF/SF2 and I. Boluk for help preparing the manuscript. This work was supported by grants from the US National Institutes of Health and Families of SMA.

Author information

Authors and Affiliations

  1. Department of Biological Sciences, Columbia University, New York, 10027, New York, USA

    Tsuyoshi Kashima & James L Manley

Authors
  1. Tsuyoshi Kashima

    You can also search for this author inPubMed Google Scholar

  2. James L Manley

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJames L Manley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Kashima, T., Manley, J. A negative element inSMN2 exon 7 inhibits splicing in spinal muscular atrophy.Nat Genet34, 460–463 (2003). https://doi.org/10.1038/ng1207

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp