Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

Common variants nearATM are associated with glycemic response to metformin in type 2 diabetes

Nature Geneticsvolume 43pages117–120 (2011)Cite this article

Subjects

Abstract

Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920,P = 2.9 × 10−9, odds ratio = 1.35, 95% CI 1.22–1.49) at a locus containingATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude thatATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional association plots around theATM locus for the logistic regression analysis.
Figure 2: Effect of KU-55933 on AMPK activation by metformin.
Figure 3: A protein blot comparing the phosphorylation status of Thr172 of AMPK and Ser79 of ACC (a well characterized marker of AMPK activation).

Similar content being viewed by others

References

  1. Nathan, D.M. et al. Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes.Diabetologia52, 17–30 (2009).

    Article CAS  Google Scholar 

  2. NICE clinical guideline 87. Type 2 diabetes: the management of type 2 diabetes. (National Institute for Health and Clinical Excellence, London, UK, 2009).

  3. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action.J. Clin. Invest.108, 1167–1174 (2001).

    Article CAS  Google Scholar 

  4. Owen, M.R., Doran, E. & Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.Biochem. J.348, 607–614 (2000).

    Article CAS  Google Scholar 

  5. Hawley, S.A. et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation.Cell Metab.11, 554–565 (2010).

    Article CAS  Google Scholar 

  6. Donnelly, L.A., Doney, A.S., Hattersley, A.T., Morris, A.D. & Pearson, E.R. The effect of obesity on glycaemic response to metformin or sulphonylureas in Type 2 diabetes.Diabet. Med.23, 128–133 (2006).

    Article CAS  Google Scholar 

  7. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.Nat. Genet.42, 105–116 (2010).

    Article CAS  Google Scholar 

  8. Boder, E. Ataxia-telangiectasia: an overview.Kroc Found. Ser.19, 1–63 (1985).

    CAS PubMed  Google Scholar 

  9. Schalch, D.S., McFarlin, D.E. & Barlow, M.H. An unusual form of diabetes mellitus in ataxia telangiectasia.N. Engl. J. Med.282, 1396–1402 (1970).

    Article CAS  Google Scholar 

  10. Bar, R.S. et al. Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors.N. Engl. J. Med.298, 1164–1171 (1978).

    Article CAS  Google Scholar 

  11. Sun, Y., Connors, K.E. & Yang, D.Q. AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner.Mol. Cell. Biochem.306, 239–245 (2007).

    Article CAS  Google Scholar 

  12. Fu, X., Wan, S., Lyu, Y.L., Liu, L.F. & Qi, H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation.PLoS One3, e2009 (2008).

    Article  Google Scholar 

  13. Sanli, T. et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells.Int. J. Radiat. Oncol. Biol. Phys.78, 221–229 (2010).

    Article CAS  Google Scholar 

  14. Lavin, M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer.Nat. Rev. Mol. Cell Biol.9, 759–769 (2008).

    Article CAS  Google Scholar 

  15. Schneider, J.G. et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome.Cell Metab.4, 377–389 (2006).

    Article CAS  Google Scholar 

  16. Miles, P.D., Treuner, K., Latronica, M., Olefsky, J.M. & Barlow, C. Impaired insulin secretion in a mouse model of ataxia telangiectasia.Am. J. Physiol. Endocrinol. Metab.293, E70–E74 (2007).

    Article CAS  Google Scholar 

  17. Trinklein, N.D., Aldred, S.J., Saldanha, A.J. & Myers, R.M. Identification and functional analysis of human transcriptional promoters.Genome Res.13, 308–312 (2003).

    Article CAS  Google Scholar 

  18. Fukao, T. et al. ATM is upregulated during the mitogenic response in peripheral blood mononuclear cells.Blood94, 1998–2006 (1999).

    CAS PubMed  Google Scholar 

  19. Savitsky, K. et al. Ataxia-telangiectasia: structural diversity of untranslated sequences suggests complex post-transcriptional regulation of ATM gene expression.Nucleic Acids Res.25, 1678–1684 (1997).

    Article CAS  Google Scholar 

  20. Gudmundsson, J. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes.Nat. Genet.39, 977–983 (2007).

    Article CAS  Google Scholar 

  21. Libby, G. et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes.Diabetes Care32, 1620–1625 (2009).

    Article CAS  Google Scholar 

  22. Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice.Biochem. J.412, 211–221 (2008).

    Article CAS  Google Scholar 

  23. Morris, A.D. et al. The diabetes audit and research in Tayside Scotland (DARTS) study: electronic record linkage to create a diabetes register. DARTS/MEMO Collaboration.Br. Med. J.315, 524–528 (1997).

    Article CAS  Google Scholar 

  24. Anonymous. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group.Lancet352, 854–865 (1998).

  25. Kahn, S.E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy.N. Engl. J. Med.355, 2427–2443 (2006).

    Article CAS  Google Scholar 

  26. Barrett, J.C. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region.Nat. Genet.41, 1330–1334 (2009).

    Article CAS  Google Scholar 

  27. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.Science316, 1336–1341 (2007).

    Article CAS  Google Scholar 

  28. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes.Nat. Genet.39, 906–913 (2007).

    Article CAS  Google Scholar 

  29. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007).

    Article CAS  Google Scholar 

  30. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies.PLoS Genet.5, e1000529 (2009).

    Article  Google Scholar 

  31. Aulchenko, Y.S., Ripke, S., Isaacs, A. & van Duijn, C.M. GenABEL: an R library for genome-wide association analysis.Bioinformatics23, 1294–1296 (2007).

    Article CAS  Google Scholar 

  32. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM.Cancer Res.64, 9152–9159 (2004).

    Article CAS  Google Scholar 

  33. Eaton, J.S., Lin, Z.P., Sartorelli, A.C., Bonawitz, N.D. & Shadel, G.S. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis.J. Clin. Invest.117, 2723–2734 (2007).

    Article CAS  Google Scholar 

  34. Crescenzi, E., Palumbo, G., de Boer, J. & Brady, H.J. Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy.Clin. Cancer Res.14, 1877–1887 (2008).

    Article CAS  Google Scholar 

  35. Hardie, D.G., Salt, I.P. & Davies, S.P. Analysis of the role of the AMP-activated protein kinase in the response to cellular stress.Methods Mol. Biol.99, 63–74 (2000).

    CAS PubMed  Google Scholar 

  36. Dale, S., Wilson, W.A., Edelman, A.M. & Hardie, D.G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I.FEBS Lett.361, 191–195 (1995).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all the participants who took part in this study, to the general practitioners, to the Scottish School of Primary Care for their help in recruiting the participants, and to the whole team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The Wellcome Trust provides support for the Wellcome Trust United Kingdom Type 2 Diabetes Case Control Collection (GoDARTS) and informatics support was provided by the Chief Scientist Office. The Wellcome Trust funds the Scottish Health Informatics Programme, provides core support for the Wellcome Trust Centre for Human Genetics in Oxford and funds the Wellcome Trust Case Control Consortium 2. This research was specifically funded by Diabetes UK (07/0003525), MRC (G0601261) and the Wellcome Trust (084726/Z/08/Z, 085475/Z/08/Z, 085475/B/08/Z). We also acknowledge support from the National Institute for Health Research award to Moorfields Eye Hospital National Health Service Foundation Trust and University College London Institute of Ophthalmology for a Specialist Biomedical Research Centre for Ophthalmology (to A.C.V.). P. Donnelly was supported in part by a Wolfson-Royal Society Merit Award. K.Z. holds a Henry Wellcome Post-Doctoral Fellowship. S.A.H. and D.G.H. were supported by the EXGENESIS consortium (LSHM-CT-2004-005272) funded by the European Commission.

Author information

Author notes
  1. Kaixin Zhou, Celine Bellenguez and Mark I McCarthy: These authors contributed equally to this work.

  2. Colin N A Palmer, Peter Donnelly and Ewan R Pearson: These authors jointly directed this work.

Authors and Affiliations

  1. Biomedical Research Institute, University of Dundee, Dundee, UK

    Kaixin Zhou, Roger Tavendale, Louise A Donnelly, Chris Schofield, Lindsay Burch, Fiona Carr, Helen Colhoun, Andrew D Morris, Calum Sutherland, Colin N A Palmer & Ewan R Pearson

  2. UK Wellcome Trust Centre for Human Genetics, Oxford, UK

    Celine Bellenguez, Chris C A Spencer, Amy Strange, Colin Freeman, Anna Rautanen, Mark I McCarthy & Peter Donnelly

  3. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK

    Amanda J Bennett, Ruth L Coleman, Christopher J Groves, Mark I McCarthy & Rury R Holman

  4. Diabetes Trials Unit, University of Oxford, Oxford, UK

    Ruth L Coleman & Rury R Holman

  5. College of Life Sciences, University of Dundee, Dundee, UK

    Simon A Hawley & D Grahame Hardie

  6. Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Subiaco, Western Australia, Australia

    Jenefer M Blackwell

  7. Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, UK

    Jenefer M Blackwell

  8. Department of Psychosis Studies, National Institute for Health Research Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, London, UK

    Elvira Bramon

  9. The South London and Maudsley National Health Service Foundation Trust, Denmark Hill, London, UK

    Elvira Bramon

  10. Diamantina Institute of Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia

    Matthew A Brown

  11. Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK

    Juan P Casas

  12. Department of Epidemiology and Public Health, University College London, London, UK

    Juan P Casas

  13. Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland

    Aiden Corvin

  14. Department of Psychological Medicine, Cardiff University School of Medicine, Heath Park, Cardiff, UK

    Nicholas Craddock

  15. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

    Panos Deloukas, Serge Dronov, Sarah Edkins, Emma Gray, Sarah Hunt, Cordelia Langford & Leena Peltonen

  16. Molecular and Physiological Sciences, The Wellcome Trust, London, UK

    Audrey Duncanson

  17. Centre for Digestive Diseases, Queen Mary University of London, London, UK

    Janusz Jankowski

  18. Digestive Diseases Centre, Leicester Royal Infirmary, Leicester, UK

    Janusz Jankowski

  19. Department of Clinical Pharmacology, Old Road Campus, University of Oxford, Oxford, UK

    Janusz Jankowski

  20. Clinical Neurosciences, St George's University of London, London, UK

    Hugh S Markus

  21. Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, UK

    Christopher G Mathew & Richard Trembath

  22. King's College London Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Denmark Hill, London, UK.,

    Robert Plomin

  23. Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK

    Stephen J Sawcer

  24. Department of Cardiovascular Science, University of Leicester, Glenfield Hospital, Leicester, UK

    Nilesh J Samani

  25. National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital National Health Service Foundation Trust, London, UK

    Ananth C Viswanathan

  26. University College London Institute of Ophthalmology,, London, UK

    Ananth C Viswanathan

  27. Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London, UK

    Nicholas W Wood

  28. Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK

    Lorna W Harries & Andrew T Hattersley

  29. Ninewells Hospital and Medical School, Dundee, UK

    Alex S F Doney

  30. UK Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, UK

    Mark I McCarthy

  31. Department of Statistics, University of Oxford, Oxford, UK

    Peter Donnelly

Consortia

The GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group

  • Kaixin Zhou
  • , Celine Bellenguez
  • , Chris C A Spencer
  • , Amanda J Bennett
  • , Ruth L Coleman
  • , Roger Tavendale
  • , Simon A Hawley
  • , Louise A Donnelly
  • , Chris Schofield
  • , Christopher J Groves
  • , Lindsay Burch
  • , Fiona Carr
  • , Amy Strange
  • , Colin Freeman
  • , Jenefer M Blackwell
  • , Elvira Bramon
  • , Matthew A Brown
  • , Juan P Casas
  • , Aiden Corvin
  • , Nicholas Craddock
  • , Panos Deloukas
  • , Serge Dronov
  • , Audrey Duncanson
  • , Sarah Edkins
  • , Emma Gray
  • , Sarah Hunt
  • , Janusz Jankowski
  • , Cordelia Langford
  • , Hugh S Markus
  • , Christopher G Mathew
  • , Robert Plomin
  • , Anna Rautanen
  • , Stephen J Sawcer
  • , Nilesh J Samani
  • , Richard Trembath
  • , Ananth C Viswanathan
  • , Nicholas W Wood
  • , MAGIC investigators
  • , Lorna W Harries
  • , Andrew T Hattersley
  • , Alex S F Doney
  • , Helen Colhoun
  • , Andrew D Morris
  • , Calum Sutherland
  • , D Grahame Hardie
  • , Leena Peltonen
  • , Mark I McCarthy
  • , Rury R Holman
  • , Colin N A Palmer
  • , Peter Donnelly
  •  & Ewan R Pearson

The Wellcome Trust Case Control Consortium 2

Contributions

A.D.M., C.N.A.P., E.R.P., A.S.F.D. H.C., A.T.H. and M.I.M. oversaw cohort collection for GoDARTS. R.R.H., M.I.M., R.L.C. and C.J.G. oversaw cohort collection for the UKPDS. The WTCCC2 DNA, genotyping, data quality control and informatics group (S.D., S.E., E.G., S.H. and C.L.) executed GWAS sample handling, genotyping and quality control. A.J.B., R. Tavendale, L.B., C.J.G. and F.C. performed the replication genotyping. The WTCCC2 Management Committee (P. Donnelly, J.M.B., E.B., M.A.B., J.P.C., A.C., N.C., P. Deloukas, A.D., J.J., H.S.M., C.G.M., R.P., A.R., S.J.S., N.J.S., R. Trembath, A.C.V., L.P. and N.W.W.) monitored the execution of the GWAS. K.Z., C.B., C.C.A.S., L.A.D., A.S. and C.F. performed statistical analyses. K.Z. and L.W.H. performed bioinformatic analyses. S.A.H., D.G.H., C. Schofield and C. Sutherland performed the functional studies. MAGIC investigators provided summary data on glycemic quantitative trait association. K.Z., C.B., C.C.A.S., C.N.P., A.D.M., C. Sutherland, D.G.H., R.R.H., M.I.M., P. Donnelly and E.R.P. contributed to writing the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence toEwan R Pearson.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Additional information

A full list of authors and affiliations is provided at the end of the paper. A full list of members is provided in theSupplementary Note.

A full list of members is provided in theSupplementary Note.

A full list of members is provided in theSupplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figures 1–3 and Supplementary Note. (PDF 598 kb)

Rights and permissions

About this article

Cite this article

The GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group., The Wellcome Trust Case Control Consortium 2. Common variants nearATM are associated with glycemic response to metformin in type 2 diabetes.Nat Genet43, 117–120 (2011). https://doi.org/10.1038/ng.735

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp