Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity

Nature Geneticsvolume 42pages1140–1143 (2010)Cite this article

Subjects

Abstract

Plague is a pandemic human invasive disease caused by the bacterial agentYersinia pestis. We here report a comparison of 17 whole genomes ofY. pestis isolates from global sources. We also screened a global collection of 286Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests thatY. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution ofY. pestis is marked by sequential, geographically specific SNPs.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic maximum parsimony tree and divergence dates based on 1,364 non-repetitive, non-homoplastic SNPs from 3,349 coding sequences in 16Y. pestis genomes (excluding FV-1).
Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates ofY. pestis colored by location.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Linz, B. et al. An African origin for the intimate association between humans andHelicobacter pylori.Nature445, 915–918 (2007).

    Article  Google Scholar 

  2. Diamond, J.Guns, Germs and Steel 1–480 (Jonathan Cape, London, UK, 1997).

  3. Stenseth, N.C. et al. Plague: past, present, and future.PLoS Med.5, e3 (2008).

    Article  Google Scholar 

  4. Keeling, M.J. & Gilligan, C.A. Metapopulation dynamics of bubonic plague.Nature407, 903–906 (2000).

    Article CAS  Google Scholar 

  5. Pollitzer, R. Plague studies. 1. A summary of the history and survey of the present distribution of the disease.Bull. World Health Organ.4, 475–533 (1951).

    CAS PubMed PubMed Central  Google Scholar 

  6. Devignat, R. Variétés de l′espècePasteurella pestis. Nouvelle hypothèse.Bull. World Health Organ.4, 247–263 (1951).

    CAS PubMed PubMed Central  Google Scholar 

  7. Wu, L.T. Chapter I: historical aspects. inPlague: A Manual for Medical and Public Health Workers 1–55 (Weishengshu, National Quarantine Service, Shanghai, China, 1936).

  8. Anisimov, A.P., Lindler, L.E. & Pier, G.B. Intraspecific diversity ofYersinia pestis.Clin. Microbiol. Rev.17, 434–464 (2004).

    Article CAS  Google Scholar 

  9. Achtman, M. Evolution, population structure and phylogeography of genetically monomorphic bacterial pathogens.Annu. Rev. Microbiol.62, 53–70 (2008).

    Article CAS  Google Scholar 

  10. Achtman, M. et al. Microevolution and history of the plague bacillus,Yersinia pestis.Proc. Natl. Acad. Sci. USA101, 17837–17842 (2004).

    Article CAS  Google Scholar 

  11. Brygoo, E.R. Epidemiologie de la peste à Madagascar.Archive de l′lnstitut Pasteur de Madagascar35, 7–147 (1966).

    Google Scholar 

  12. Girard, G. Immunity in plague. Acquisitions supplied by 30 years of work on the “Pasteurella pestis EV” (Girard and Robic) strain.Biol. Med. (Paris)52, 631–731 (1963).

    CAS  Google Scholar 

  13. Li, Y. et al. Genotyping and phylogenetic analysis ofYersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci.PLoS ONE4, e6000 (2009).

    Article  Google Scholar 

  14. Haensch, S. et al. Distinct clones ofYersinia pestis caused the Black Death.PLoS Pathog6, e1001134 (2010).

    Article  Google Scholar 

  15. Silkroad Foundation. The Bridge between Eastern and Western Cultures. (2009)〈http://www.silkroadfoundation.org/toc/index.html〉.

  16. Levathes, L.When China Ruled the Seas: The Treasure Fleet of the Dragon Throne, 1405–1433 1–252 (Oxford University Press, New York, 1996).

  17. Link, V.B. A history of plague in United States of America.Public Health Monogr.26, 1–120 (1955).

    CAS PubMed  Google Scholar 

  18. Yu, H.L. & Christakos, G. Spatiotemporal modelling and mapping of the bubonic plague epidemic in India.Int. J. Health Geogr.5, 12 (2006).

    Article  Google Scholar 

  19. Del Rio, A., Zegers, R., Boza, R.D. & Montero, L. Informe sobre la epidemia de peste bubonica.La Chilena di HijieneIX, 1–7 (1904).

    Google Scholar 

  20. Nocht, B. & Giemsa G. Ueber die Vernichtung von Ratten an Bord von Schiffen als Massregel gegen die Einschleppung der Pest.Arbeiten aus dem Kaiserlichen GesundheitsamteXX, 6 (1903).

  21. Lauzeral, P. & Millischer, P. A propos de la filiation de deux cas.Bull. Soc. Pathol. Exot.25, 935–941 (1932).

    Google Scholar 

  22. Drummond, A.J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol. Biol.7, 214 (2007).

    Article  Google Scholar 

  23. Adjemian, J.Z., Foley, P., Gage, K.L. & Foley, J.E. Initiation and spread of traveling waves of plague,Yersinia pestis, in the western United States.Am. J. Trop. Med. Hyg.76, 365–375 (2007).

    Article  Google Scholar 

  24. Guiyoule, A. et al. Recent emergence of new variants ofYersinia pestis in Madagascar.J. Clin. Microbiol.35, 2826–2833 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  25. Zhou, D. et al. DNA microarray analysis of genome dynamics inYersinia pestis: insights into bacterial genome microevolution and niche adaptation.J. Bacteriol.186, 5138–5146 (2004).

    Article CAS  Google Scholar 

  26. Eppinger, M. et al. Draft genome sequences ofYersinia pestis isolates from natural foci of endemic plague in China.J. Bacteriol.191, 7628–7629 (2009).

    Article CAS  Google Scholar 

  27. Eppinger, M. et al. Genome sequence of the deep-rootedYersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium.J. Bacteriol.192, 1685–1699 (2010).

    Article CAS  Google Scholar 

  28. Auerbach, R.K. et al.Yersinia pestis evolution on a small timescale: comparison of whole genome sequences from North America.PLoS ONE2, e770 (2007).

    Article  Google Scholar 

  29. Touchman, J.W. et al. A North AmericanYersinia pestis draft genome sequence: SNPs and phylogenetic analysis.PLoS ONE2, e220 (2007).

    Article  Google Scholar 

  30. Garcia, E. et al. Pestoides F, an atypicalYersinia pestis strain from the former Soviet Union.Adv. Exp. Med. Biol.603, 17–22 (2007).

    Article  Google Scholar 

  31. Song, Y. et al. Complete genome sequence ofYersinia pestis strain 91001, an isolate avirulent to humans.DNA Res.11, 179–197 (2004).

    Article CAS  Google Scholar 

  32. Chain, P.S. et al. Complete genome sequence ofYersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen.J. Bacteriol.188, 4453–4463 (2006).

    Article  Google Scholar 

  33. Parkhill, J. et al. Genome sequence ofYersinia pestis, the causative agent of plague.Nature413, 523–527 (2001).

    Article CAS  Google Scholar 

  34. Deng, W. et al. Genome sequence ofYersinia pestis KIM.J. Bacteriol.184, 4601–4611 (2002).

    Article CAS  Google Scholar 

  35. Chain, P.S.G. et al. Insights into the genome evolution ofYersinia pestis through whole genome comparison withYersinia pseudotuberculosis.Proc. Natl. Acad. Sci. USA101, 13826–13831 (2004).

    Article CAS  Google Scholar 

  36. Welch, T.J. et al. Multiple antimicrobial resistance in plague: an emerging public health risk.PLoS ONE2, e309 (2007).

    Article  Google Scholar 

  37. Galimand, M. et al. Multidrug resistance inYersinia pestis mediated by a transferable plasmid.N. Engl. J. Med.337, 677–680 (1997).

    Article CAS  Google Scholar 

  38. Pearson, T., Okinaka, R.T., Foster, J.T. & Keim, P. Phylogenetic understanding of clonal populations in an era of whole genome sequencing.Infect. Genet. Evol.9, 1010–1019 (2009).

    Article CAS  Google Scholar 

  39. Roumagnac, P. et al. Evolutionary history ofSalmonella Typhi.Science314, 1301–1304 (2006).

    Article CAS  Google Scholar 

  40. Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence ofThermotoga maritima.Nature399, 323–329 (1999).

    Article CAS  Google Scholar 

  41. Eppinger, M. et al. The complete genome sequence ofYersinia pseudotuberculosis IP31758, the causative Agent of Far East scarlet-like fever.PLoS Genet.3, e142 (2007).

    Article  Google Scholar 

  42. Huson, D.H. et al. Design of a compartmentalized shotgun assembler for the human genome.Bioinformatics17 (Suppl 1), S132–S139 (2001).

    Article  Google Scholar 

  43. Holt, K.E. et al. High-throughput sequencing provides insights into genome variation and evolution inSalmonella Typhi.Nat. Genet.40, 987–993 (2008).

    Article CAS  Google Scholar 

  44. Lowder, B.V. et al. Recent human-to-poultry host jump, adaptation, and pandemic spread ofStaphylococcus aureus.Proc. Natl. Acad. Sci. USA106, 19545–19550 (2009).

    Article CAS  Google Scholar 

  45. Kurtz, S. et al. Versatile and open software for comparing large genomes.Genome Biol.5, R12 (2004).

    Article  Google Scholar 

  46. Vogler, A.J. et al. Assays for the rapid and specific identification of North AmericanYersinia pestis and the common laboratory strain CO92.Biotechniques44, 201 203–204, 207 (2008).

    Article CAS  Google Scholar 

  47. Vogler, A.J. et al. Phylogeography ofFrancisella tularensis: global expansion of a highly fit clone.J. Bacteriol.191, 2474–2484 (2009).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge technical assistance by R. Nera and A. Doyle and helpful comments from A. Rambaut and D. Falush. Support was provided by grants from the German Army Medical Corps (MSAB15A013) and the Science Foundation of Ireland (05/FE1/B882) to M.A., the National Key Program for Infectious Diseases of China (2008ZX10004-009) and the State Key Development Program for Basic Research of China (2009CB522600) to R.Y. and the US Department of Homeland Security (NBCH2070001; HSHQDC-08-C00158) and US National Institutes of Health (AI065359) to P.K. and D.M.W. Whole genome sequencing ofY. pestis strains IP275, MG05-1020 and UG05-045 was supported by federal funds from the National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Department of Health and Human Services (N01 AI-30071), and sequencing of IP674 was supported by funding for Sanger Institute Pathogen Genomics by the Wellcome Trust. Genomic DNA ofY. pestis MG05-1020 was kindly provided by S. Bearden and M. Schriefer (Centers for Disease Control and Prevention, Fort Collins, Colorado, USA).

Author information

Author notes
  1. Giovanna Morelli, Yajun Song, Camila J Mazzoni & Mark Eppinger

    Present address: These authors contributed equally to this work. Present addresses: Max-Planck-Institut für molekulare Genetik, Berlin, Germany (G.M. and B.K.), Berlin Center for Genomics in Biodiversity Research, Berlin, Germany (C.J.M.) and Max-Delbrück-Centrum für molekulare Medizin (MDC) Berlin-Buch, Berlin, Germany (M.F.).,

Authors and Affiliations

  1. Department of Molecular Biology, Max-Planck-Institut für Infektionsbiologie, Berlin, Germany

    Giovanna Morelli, Camila J Mazzoni, Philippe Roumagnac, Mirjam Feldkamp, Barica Kusecek, Thierry Wirth & Mark Achtman

  2. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China

    Yajun Song, Yanjun Li, Yujun Cui & Ruifu Yang

  3. Environmental Research Institute, University College Cork, Cork, Ireland

    Yajun Song, Camila J Mazzoni & Mark Achtman

  4. Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA

    Mark Eppinger & Jacques Ravel

  5. Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Mixte Research Unit Biology and Genetics of Plant/Pathogen Interactions (UMR BGPI), Montpellier, France

    Philippe Roumagnac

  6. Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA

    David M Wagner, Amy J Vogler & Paul Keim

  7. The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

    Nicholas R Thomson

  8. Medical Research Council (MRC) Centre for Outbreak Analysis and Modeling, Imperial College Faculty of Medicine, London, UK

    Thibaut Jombart & Francois Balloux

  9. Department of Systematics and Evolution UMR-CNRS 7205, Muséum National d′Histoire Naturelle–Ecole Pratique des Hautes Etudes, Paris, France

    Raphael Leblois & Thierry Wirth

  10. Institute of Human Genetics, German Research Center for Environmental Health, Neuherberg, Germany

    Peter Lichtner

  11. Unité Peste, Institut Pasteur de Madagascar, Madagascar

    Lila Rahalison

  12. Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA

    Jeannine M Petersen

  13. Pathogen Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA

    Paul Keim

  14. Institut Pasteur, Yersinia Research Unit, Paris, France

    Elisabeth Carniel

  15. Department of Microbiology, University College Cork, Cork, Ireland

    Mark Achtman

Authors
  1. Giovanna Morelli

    You can also search for this author inPubMed Google Scholar

  2. Yajun Song

    You can also search for this author inPubMed Google Scholar

  3. Camila J Mazzoni

    You can also search for this author inPubMed Google Scholar

  4. Mark Eppinger

    You can also search for this author inPubMed Google Scholar

  5. Philippe Roumagnac

    You can also search for this author inPubMed Google Scholar

  6. David M Wagner

    You can also search for this author inPubMed Google Scholar

  7. Mirjam Feldkamp

    You can also search for this author inPubMed Google Scholar

  8. Barica Kusecek

    You can also search for this author inPubMed Google Scholar

  9. Amy J Vogler

    You can also search for this author inPubMed Google Scholar

  10. Yanjun Li

    You can also search for this author inPubMed Google Scholar

  11. Yujun Cui

    You can also search for this author inPubMed Google Scholar

  12. Nicholas R Thomson

    You can also search for this author inPubMed Google Scholar

  13. Thibaut Jombart

    You can also search for this author inPubMed Google Scholar

  14. Raphael Leblois

    You can also search for this author inPubMed Google Scholar

  15. Peter Lichtner

    You can also search for this author inPubMed Google Scholar

  16. Lila Rahalison

    You can also search for this author inPubMed Google Scholar

  17. Jeannine M Petersen

    You can also search for this author inPubMed Google Scholar

  18. Francois Balloux

    You can also search for this author inPubMed Google Scholar

  19. Paul Keim

    You can also search for this author inPubMed Google Scholar

  20. Thierry Wirth

    You can also search for this author inPubMed Google Scholar

  21. Jacques Ravel

    You can also search for this author inPubMed Google Scholar

  22. Ruifu Yang

    You can also search for this author inPubMed Google Scholar

  23. Elisabeth Carniel

    You can also search for this author inPubMed Google Scholar

  24. Mark Achtman

    You can also search for this author inPubMed Google Scholar

Contributions

M.A., T.W., D.M.W., P.R., J.R., R.Y. and P.K. designed the study. L.R., J.M.P., R.Y. and E.C. contributedY. pestis DNA and demographic information. G.M., Y.S., M.E., P.R., M.F., B.K., A.J.V., Y.L., Y.C., P.L. and N.R.T. performed sequencing, SNP discovery, MassArray and SNP testing. G.M., Y.S., C.J.M., M.E., P.R., D.M.W. and P.L. performed bioinformatic analyses of the data. C.J.M., T.J., R.L., F.B. and T.W. performed population genetic analyses. M.A., C.J.M., M.E., P.R., D.M.W., T.J., F.B., P.K., T.W., J.R., R.Y. and E.C. wrote the manuscript.

Corresponding authors

Correspondence toRuifu Yang,Elisabeth Carniel orMark Achtman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2 and Supplementary Note (PDF 3326 kb)

Rights and permissions

About this article

Cite this article

Morelli, G., Song, Y., Mazzoni, C.et al.Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.Nat Genet42, 1140–1143 (2010). https://doi.org/10.1038/ng.705

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp