Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Article
  • Published:

Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits

Nature Geneticsvolume 49pages1584–1592 (2017)Cite this article

Subjects

Abstract

Persistent insomnia is among the most frequent complaints in general practice. To identify genetic factors for insomnia complaints, we performed a genome-wide association study (GWAS) and a genome-wide gene-based association study (GWGAS) in 113,006 individuals. We identify three loci and seven genes associated with insomnia complaints, with the associations for one locus and five genes supported by joint analysis with an independent sample (n = 7,565). Our top association (MEIS1,P < 5 × 10−8) has previously been implicated in restless legs syndrome (RLS). Additional analyses favor the hypothesis thatMEIS1 exhibits pleiotropy for insomnia and RLS and show that the observed association with insomnia complaints cannot be explained only by the presence of an RLS subgroup within the cases. Sex-specific analyses suggest that there are different genetic architectures between the sexes in addition to shared genetic factors. We show substantial positive genetic correlation of insomnia complaints with internalizing personality traits and metabolic traits and negative correlation with subjective well-being and educational attainment. These findings provide new insight into the genetic architecture of insomnia.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plots showing SNP and gene associations with insomnia complaints.
Figure 2: Comparison of association results for insomnia complaints in males and females.
Figure 3: Protein–protein interaction subnetworks identified by the heat diffusion algorithm HotNet2.
Figure 4: Genetic and phenotypic overlap between insomnia complaints and other traits and disorders.

Similar content being viewed by others

References

  1. Wittchen, H.U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010.Eur. Neuropsychopharmacol.21, 655–679 (2011).

    Article CAS PubMed  Google Scholar 

  2. Zhang, B. & Wing, Y.-K. Sex differences in insomnia: a meta-analysis.Sleep29, 85–93 (2006).

    Article PubMed  Google Scholar 

  3. Morin, C.M. et al. Insomnia disorder.Nat. Rev. Dis. Primers1, 15026 (2015).

    Article PubMed  Google Scholar 

  4. Baglioni, C. et al. Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies.J. Affect. Disord.135, 10–19 (2011).

    Article PubMed  Google Scholar 

  5. Palagini, L. et al. Sleep loss and hypertension: a systematic review.Curr. Pharm. Des.19, 2409–2419 (2013).

    Article CAS PubMed  Google Scholar 

  6. Mallon, L., Broman, J.E. & Hetta, J. Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population.J. Intern. Med.251, 207–216 (2002).

    Article CAS PubMed  Google Scholar 

  7. Nilsson, P.M., Nilsson, J.Å., Hedblad, B. & Berglund, G. Sleep disturbance in association with elevated pulse rate for prediction of mortality—consequences of mental strain?J. Intern. Med.250, 521–529 (2001).

    Article CAS PubMed  Google Scholar 

  8. Schwartz, S.W. et al. Are sleep complaints an independent risk factor for myocardial infarction?Ann. Epidemiol.8, 384–392 (1998).

    Article CAS PubMed  Google Scholar 

  9. Clark, A., Lange, T., Hallqvist, J., Jennum, P. & Rod, N.H. Sleep impairment and prognosis of acute myocardial infarction: a prospective cohort study.Sleep37, 851–858 (2014).

    Article PubMed PubMed Central  Google Scholar 

  10. Cappuccio, F.P., D'Elia, L., Strazzullo, P. & Miller, M.A. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis.Diabetes Care33, 414–420 (2010).

    Article PubMed  Google Scholar 

  11. Hargens, T.A., Kaleth, A.S., Edwards, E.S. & Butner, K.L. Association between sleep disorders, obesity, and exercise: a review.Nat. Sci. Sleep5, 27–35 (2013).

    Article PubMed PubMed Central  Google Scholar 

  12. Lind, M.J., Aggen, S.H., Kirkpatrick, R.M., Kendler, K.S. & Amstadter, A.B. A longitudinal twin study of insomnia symptoms in adults.Sleep38, 1423–1430 (2015).

    Article PubMed PubMed Central  Google Scholar 

  13. Bootzin, R.R. & Epstein, D.R. Understanding and treating insomnia.Annu. Rev. Clin. Psychol.7, 435–458 (2011).

    Article PubMed  Google Scholar 

  14. Bettolo, A. L'insonnia e sua importanza clinica: le sue cause predisponenti e determinanti, i suoi caratteri nelle diverse malattie, Ia sua importanza prognostica ed il suo trattamento generale e speciale.Studium21, 54–65 (1931).

    Google Scholar 

  15. Morin, C.M. et al. Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: a randomized controlled trial.J. Am. Med. Assoc.301, 2005–2015 (2009).

    Article CAS  Google Scholar 

  16. Harvey, A.G. & Tang, N.K.Y. Cognitive behaviour therapy for primary insomnia: can we rest yet?Sleep Med. Rev.7, 237–262 (2003).

    Article PubMed  Google Scholar 

  17. Morin, C.M. et al. The natural history of insomnia: a population-based 3-year longitudinal study.Arch. Intern. Med.169, 447–453 (2009).

    Article PubMed  Google Scholar 

  18. Bastien, C.H. & Morin, C.M. Familial incidence of insomnia.J. Sleep Res.9, 49–54 (2000).

    Article CAS PubMed  Google Scholar 

  19. Dauvilliers, Y. et al. Family studies in insomnia.J. Psychosom. Res.58, 271–278 (2005).

    Article PubMed  Google Scholar 

  20. Beaulieu-Bonneau, S., LeBlanc, M., Mérette, C., Dauvilliers, Y. & Morin, C.M. Family history of insomnia in a population-based sample.Sleep30, 1739–1745 (2007).

    Article PubMed PubMed Central  Google Scholar 

  21. Wing, Y.K. et al. Familial aggregation and heritability of insomnia in a community-based study.Sleep Med.13, 985–990 (2012).

    Article CAS PubMed  Google Scholar 

  22. Byrne, E.M. et al. A genome-wide association study of sleep habits and insomnia.Am. J. Med. Genet. B. Neuropsychiatr. Genet.162B, 439–451 (2013).

    Article CAS PubMed  Google Scholar 

  23. Amin, N. et al. Genetic variants inRBFOX3 are associated with sleep latency.Eur. J. Hum. Genet.24, 1488–1495 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Lane, J.M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits.Nat. Genet.49, 274–281 (2017).

    Article CAS PubMed  Google Scholar 

  25. Lane, J.M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank.Nat. Commun.7, 10889 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Jones, S.E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci.PLoS Genet.12, e1006125 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Vgontzas, A.N. et al. Persistent insomnia: the role of objective short sleep duration and mental health.Sleep35, 61–68 (2012).

    Article PubMed PubMed Central  Google Scholar 

  28. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age.PLoS Med.12, e1001779 (2015).

    Article PubMed PubMed Central  Google Scholar 

  29. Benjamins, J.S. et al. Insomnia heterogeneity: characteristics to consider for data-driven multivariate subtyping.Sleep Med. Rev.http://dx.doi.org/10.1016/j.smrv.2016.10.005 (2016).

  30. Morphy, H., Dunn, K.M., Lewis, M., Boardman, H.F. & Croft, P.R. Epidemiology of insomnia: a longitudinal study in a UK population.Sleep30, 274–280 (2007).

    PubMed  Google Scholar 

  31. Paparrigopoulos, T. et al. Insomnia and its correlates in a representative sample of the Greek population.BMC Public Health10, 531 (2010).

    Article PubMed PubMed Central  Google Scholar 

  32. Cho, Y.W. et al. Epidemiology of insomnia in Korean adults: prevalence and associated factors.J. Clin. Neurol.5, 20–23 (2009).

    Article PubMed PubMed Central  Google Scholar 

  33. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.Nat. Genet.47, 291–295 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis.Nat. Genet.47, 1385–1392 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data.PLOS Comput. Biol.11, e1004219 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Cai, M. et al. Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.Blood120, 335–346 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.Science348, 648–660 (2015).

  38. Skol, A.D., Scott, L.J., Abecasis, G.R. & Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies.Nat. Genet.38, 209–213 (2006).

    Article CAS PubMed  Google Scholar 

  39. Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions.Nat. Genet.39, 1000–1006 (2007).

    Article CAS PubMed  Google Scholar 

  40. Winkelmann, J. et al. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1.PLoS Genet.7, e1002171 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Schulte, E.C. et al. Targeted resequencing and systematicin vivo functional testing identifies rare variants inMEIS1 as significant contributors to restless legs syndrome.Am. J. Hum. Genet.95, 85–95 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Xiong, L. et al.MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels.Hum. Mol. Genet.18, 1065–1074 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Allen, R.P., Barker, P.B., Horská, A. & Earley, C.J. Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep.Neurology80, 2028–2034 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Spiegelhalder, K. et al. Magnetic resonance spectroscopy in patients with insomnia: a repeated measurement study.PLoS One11, e0156771 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Han, B. et al. A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases.Nat. Genet.48, 803–810 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Ohayon, M.M., O'Hara, R. & Vitiello, M.V. Epidemiology of restless legs syndrome: a synthesis of the literature.Sleep Med. Rev.16, 283–295 (2012).

    Article PubMed  Google Scholar 

  47. Yang, J. et al. Genome-wide genetic homogeneity between sexes and populations for human height and body mass index.Hum. Mol. Genet.24, 7445–7449 (2015).

    Article CAS PubMed  Google Scholar 

  48. Tucci, V. Genomic imprinting: a new epigenetic perspective of sleep regulation.PLoS Genet.12, e1006004 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Lassi, G. et al. Loss ofGnas imprinting differentially affects REM/NREM sleep and cognition in mice.PLoS Genet.8, e1002706 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Dijk, D.-J. Sleep of aging women and men: back to basics.Sleep29, 12–13 (2006).

    Article PubMed  Google Scholar 

  51. Ursin, R., Bjorvatn, B. & Holsten, F. Sleep duration, subjective sleep need, and sleep habits of 40- to 45-year-olds in the Hordaland Health Study.Sleep28, 1260–1269 (2005).

    Article PubMed  Google Scholar 

  52. Redline, S. et al. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture.Arch. Intern. Med.164, 406–418 (2004).

    Article PubMed  Google Scholar 

  53. Buysse, D.J. et al. EEG spectral analysis in primary insomnia: NREM period effects and sex differences.Sleep31, 1673–1682 (2008).

    Article PubMed PubMed Central  Google Scholar 

  54. Leiserson, M.D.M. et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.Nat. Genet.47, 106–114 (2015).

    Article CAS PubMed  Google Scholar 

  55. Bonnet, M.H. & Arand, D.L. 24-hour metabolic rate in insomniacs and matched normal sleepers.Sleep18, 581–588 (1995).

    Article CAS PubMed  Google Scholar 

  56. Feige, B. et al. The microstructure of sleep in primary insomnia: an overview and extension.Int. J. Psychophysiol.89, 171–180 (2013).

    Article PubMed  Google Scholar 

  57. Allen, N.E., Sudlow, C., Peakman, T. & Collins, R. UK Biobank data: come and get it.Sci. Transl. Med.6, 224ed4 (2014).

    Article PubMed  Google Scholar 

  58. Visscher, P.M. Sizing up human height variation.Nat. Genet.40, 489–490 (2008).

    Article CAS PubMed  Google Scholar 

  59. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes.Nat. Genet.39, 906–913 (2007).

    Article CAS PubMed  Google Scholar 

  60. Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic population.Nat. Genet.47, 435–444 (2015).

    Article CAS PubMed  Google Scholar 

  61. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation.Nat. Genet.40, 1068–1075 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007).

    CAS PubMed PubMed Central  Google Scholar 

  63. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies.PLoS Genet.10, e1004722 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans.Bioinformatics26, 2190–2191 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  65. Razick, S., Magklaras, G. & Donaldson, I.M. iRefIndex: a consolidated protein interaction database with provenance.BMC Bioinformatics9, 405 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA102, 15545–15550 (2005).

    CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Netherlands Organization for Scientific Research (NWO Brain & Cognition 433-09-228, NWO VICI 453-14-005 and 453-07-001, 645-000-003) and by the European Research Council (ERC-ADG-2014-671084 INSOMNIA). The analyses were carried out on the Genetic Cluster Computer, which is financed by the Netherlands Scientific Organization (NWO; 480-05-003), by VU University (Amsterdam, the Netherlands) and by the Dutch Brain Foundation and is hosted by the Dutch National Computing and Networking Services (SurfSARA). This research has been conducted using the UK Biobank Resource under application number 16406. We thank the participants and researchers who contributed and collected the data. We thank the participants of the Netherlands Sleep Registry for providing extensive phenotypic data. We thank the participants who provided samples and data for the Icelandic study and our valued colleagues who contributed to data collection and the phenotypic characterization of clinical samples, genotyping and analysis of genome sequence data. We also thank the EU-RLS consortium and the Cooperative Research in the Region of Augsburg (KORA) study for providing the RLS summary statistics. KORA was initiated and is financed by the Helmholtz Zentrum München, which is funded by the German Federal Ministry of Education and Research and by the state of Bavaria. The collection of sociodemographic and clinical data in the DHS was supported by the German Migraine & Headache Society (DMKG) and by unrestricted grants of equal share from Almirall, AstraZeneca, Berlin Chemie, Boehringer, Boots Health Care, GlaxoSmithKline, Janssen Cilag, McNeil Pharma, MSD Sharp & Dohme, and Pfizer to the University of Münster. Blood collection in the DHS was done through funds from the Institute of Epidemiology and Social Medicine at the University of Münster. Genotyping for the Human Omni chip was supported by the German Ministry of Education and Research (BMBF; grant 01ER0816). Researchers interested in using DHS data are required to sign and follow the terms of a cooperation agreement that includes a number of clauses designed to ensure protection of privacy and compliance with relevant laws. The COR study was supported by unrestricted grants to the University of Münster from the German Restless Legs Patient Organisation (RLS Deutsche Restless Legs Vereinigung), the Swiss RLS Patient Association (Schweizerische Restless Legs Selbsthilfegruppe) and a consortium formed by Boeringer Ingelheim Pharma, Mundipharma Research, Neurobiotec, Roche Pharma, UCB (Germany + Switzerland) and Vifor Pharma. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Researchers interested in using COR data are required to sign and follow the terms of a cooperation agreement that includes a number of clauses designed to ensure protection of privacy and compliance with relevant laws. For further information on DHS and COR, contact K.B. (bergerk@uni-muenster.de). Acknowledgments for data contributed by other consortia that were used for secondary analyses are presented in theSupplementary Note.

Author information

Author notes
  1. Konrad Oexle, Eus J W Van Someren and Danielle Posthuma: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

    Anke R Hammerschlag, Sven Stringer, Christiaan A de Leeuw, Suzanne Sniekers, Erdogan Taskesen, Kyoko Watanabe & Danielle Posthuma

  2. Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

    Erdogan Taskesen

  3. Department of Sleep and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Netherlands Academy of Arts and Sciences), Amsterdam, The Netherlands

    Tessa F Blanken, Kim Dekker, Bart H W te Lindert, Rick Wassing & Eus J W Van Someren

  4. Department of Integrative Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

    Tessa F Blanken & Eus J W Van Someren

  5. Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

    Tessa F Blanken & Eus J W Van Someren

  6. deCODE Genetics, Amgen, Inc., Reykjavík, Iceland

    Ingileif Jonsdottir, Gudmar Thorleifsson, Hreinn Stefansson & Kari Stefansson

  7. Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland

    Ingileif Jonsdottir, Thorarinn Gislason & Kari Stefansson

  8. Department of Respiratory Medicine and Sleep, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland

    Thorarinn Gislason

  9. Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany

    Klaus Berger & Juergen Wellmann

  10. Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany

    Barbara Schormair, Juliane Winkelmann & Konrad Oexle

  11. Institute of Human Genetics, Technische Universität München, Munich, Germany

    Barbara Schormair & Juliane Winkelmann

  12. Neurologische Klinik und Poliklinik, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany

    Juliane Winkelmann

  13. Munich Cluster for Systems Neurology (SyNergy), Munich, Germany

    Juliane Winkelmann

  14. Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

    Danielle Posthuma

Authors
  1. Anke R Hammerschlag
  2. Sven Stringer
  3. Christiaan A de Leeuw
  4. Suzanne Sniekers
  5. Erdogan Taskesen
  6. Kyoko Watanabe
  7. Tessa F Blanken
  8. Kim Dekker
  9. Bart H W te Lindert
  10. Rick Wassing
  11. Ingileif Jonsdottir
  12. Gudmar Thorleifsson
  13. Hreinn Stefansson
  14. Thorarinn Gislason
  15. Klaus Berger
  16. Barbara Schormair
  17. Juergen Wellmann
  18. Juliane Winkelmann
  19. Kari Stefansson
  20. Konrad Oexle
  21. Eus J W Van Someren
  22. Danielle Posthuma

Contributions

D.P. and E.J.W.V.S. conceived the study. A.R.H. and D.P. performed the analyses. T.F.B., K.D., B.H.W.t.L, R.W. and E.J.W.V.S. recruited participants from the NSR and collected and analyzed data for phenotypic validation. C.A.d.L., S. Sniekers, K.W. and E.T. performed secondary analyses. S. Stringer prepared the UK Biobank data for analyses and wrote a pipeline to facilitate efficient data processing. G.T. and I.J. performed the deCODE analyses. K.O. performed the COR and DHS analyses. H.S., T.G., K.B., B.S., J. Wellmann, J. Winkelmann, K.S., K.O. and E.J.W.V.S. contributed data analyzed in this study. A.R.H., K.O., E.J.W.V.S. and D.P. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence toDanielle Posthuma.

Ethics declarations

Competing interests

I.J., G.T., H.S. and K.S. are affiliated with deCODE Genetics/Amgen, Inc., and declare competing financial interests as employees. The other authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18, Supplementary Tables 1–3, 5, 7, 8, 10–30, 33 and 34, and Supplementary Note (PDF 5221 kb)

Supplementary Table 4

Functional annotations of the SNPs and SNPs in LD that are associated with insomnia complaints. (XLSX 25 kb)

Supplementary Table 6

Genome-wide gene associations with insomnia complaints. (XLSX 1798 kb)

Supplementary Table 9

Tissue expression of the genes identified by the insomniacomplaints GWAS and GWGAS. (XLSX 30 kb)

Supplementary Table 31

Pathway analysis of canonical pathways and GO pathways. (XLSX 169 kb)

Supplementary Table 32

Enrichment analysis of HotNet2 subnetworks. (XLSX 30 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammerschlag, A., Stringer, S., de Leeuw, C.et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits.Nat Genet49, 1584–1592 (2017). https://doi.org/10.1038/ng.3888

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp