Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Article
  • Published:

Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases

Nature Geneticsvolume 49pages515–526 (2017)Cite this article

Subjects

Abstract

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess ofde novo mutations or private disruptive mutations in 5.7% of cases.Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up forNAA15,KMT5B, andASH1L highlighted new syndromic and nonsyndromic forms of disease.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASID patient network.
Figure 2: Targeted sequencing highlights genes reaching significance forde novo mutations and private disruptive variant burden.
Figure 3: Protein locations of private disruptive variants in new candidate NDD risk genes.
Figure 4: ASD versus ID/DD genes.
Figure 5: Habituation deficits inDrosophila knockdown models.

Similar content being viewed by others

References

  1. Diagnostic and Statistical Manual of Mental Disorders 5th edn. (American Psychiatric Association, 2013).

  2. Posthuma, D. & Polderman, T.J. What have we learned from recent twin studies about the etiology of neurodevelopmental disorders?Curr. Opin. Neurol.26, 111–121 (2013).

    Article PubMed  Google Scholar 

  3. Torres, F., Barbosa, M. & Maciel, P. Recurrent copy number variations as risk factors for neurodevelopmental disorders: critical overview and analysis of clinical implications.J. Med. Genet.53, 73–90 (2016).

    Article CAS PubMed  Google Scholar 

  4. Matson, J.L. & Shoemaker, M. Intellectual disability and its relationship to autism spectrum disorders.Res. Dev. Disabil.30, 1107–1114 (2009).

    Article PubMed  Google Scholar 

  5. Stessman, H.A., Bernier, R. & Eichler, E.E. A genotype-first approach to defining the subtypes of a complex disease.Cell156, 872–877 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Bernier, R. et al. DisruptiveCHD8 mutations define a subtype of autism early in development.Cell158, 263–276 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. van Bon, B.W. et al. Disruptivede novo mutations ofDYRK1A lead to a syndromic form of autism and ID.Mol. Psychiatry21, 126–132 (2016).

    Article CAS PubMed  Google Scholar 

  8. Helsmoortel, C. et al. A SWI/SNF-related autism syndrome caused byde novo mutations inADNP.Nat. Genet.46, 380–384 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. O'Roak, B.J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders.Science338, 1619–1622 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Hiatt, J.B., Pritchard, C.C., Salipante, S.J., O'Roak, B.J. & Shendure, J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation.Genome Res.23, 843–854 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  11. O'Roak, B.J. et al. Recurrentde novo mutations implicate novel genes underlying simplex autism risk.Nat. Commun.5, 5595 (2014).

    Article CAS PubMed  Google Scholar 

  12. Iossifov, I. et al. The contribution ofde novo coding mutations to autism spectrum disorder.Nature515, 216–221 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Krumm, N. et al. Excess of rare, inherited truncating mutations in autism.Nat. Genet.47, 582–588 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  14. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism.Nature515, 209–215 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  15. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability.N. Engl. J. Med.367, 1921–1929 (2012).

    Article CAS PubMed  Google Scholar 

  16. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study.Lancet380, 1674–1682 (2012).

    Article CAS PubMed  Google Scholar 

  17. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders.Nature519, 223–228 (2015).

  18. Turner, T.N. et al. denovo-db: a compendium of humande novo variants.Nucleic Acids Res.45, D804–D811 (2017).

    Article CAS PubMed  Google Scholar 

  19. Coe, B.P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay.Nat. Genet.46, 1063–1071 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Hormozdiari, F., Penn, O., Borenstein, E. & Eichler, E.E. The discovery of integrated gene networks for autism and related disorders.Genome Res.25, 142–154 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Wang, T. et al.De novo genic mutations among a Chinese autism spectrum disorder cohort.Nat. Commun.7, 13316 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Turner, T.N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA.Am. J. Hum. Genet.98, 58–74 (2016).

    Article CAS PubMed  Google Scholar 

  23. Hamdan, F.F. et al.De novo mutations inFOXP1 in cases with intellectual disability, autism, and language impairment.Am. J. Hum. Genet.87, 671–678 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Ba, W. et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function.Hum. Mol. Genet.25, 892–902 (2016).

    Article CAS PubMed  Google Scholar 

  25. Han, S. et al. Autistic-like behaviour inScn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission.Nature489, 385–390 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Witteveen, J.S. et al. Haploinsufficiency of MeCP2-interacting transcriptional co-repressorSIN3A causes mild intellectual disability by affecting the development of cortical integrity.Nat. Genet.48, 877–887 (2016).

    Article CAS PubMed  Google Scholar 

  27. Shoubridge, C. et al. Mutations in the guanine nucleotide exchange factor geneIQSEC2 cause nonsyndromic intellectual disability.Nat. Genet.42, 486–488 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Chan, C.B. et al. PIKE is essential for oligodendroglia development and CNS myelination.Proc. Natl. Acad. Sci. USA111, 1993–1998 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. McNeill, E.M. et al. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.Dev. Biol.353, 331–343 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Stray-Pedersen, A. et al. Biallelic mutations inUNC80 cause persistent hypotonia, encephalopathy, growth retardation, and severe intellectual disability.Am. J. Hum. Genet.98, 202–209 (2016).

    Article CAS PubMed  Google Scholar 

  31. Turner, T.N. et al. Loss of δ-catenin function in severe autism.Nature520, 51–56 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Sanders, S.J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci.Neuron87, 1215–1233 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Rope, A.F. et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.Am. J. Hum. Genet.89, 28–43 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Liszczak, G. et al. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.Nat. Struct. Mol. Biol.20, 1098–1105 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Baird, P.A., Anderson, T.W., Newcombe, H.B. & Lowry, R.B. Genetic disorders in children and young adults: a population study.Am. J. Hum. Genet.42, 677–693 (1988).

    CAS PubMed PubMed Central  Google Scholar 

  36. Rosenfeld, J.A., Coe, B.P., Eichler, E.E., Cuckle, H. & Shaffer, L.G. Estimates of penetrance for recurrent pathogenic copy-number variations.Genet. Med.15, 478–481 (2013).

    Article CAS PubMed  Google Scholar 

  37. Chen, E.Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.BMC Bioinformatics14, 128 (2013).

    Article PubMed PubMed Central  Google Scholar 

  38. Stessman, H.A. et al. Disruption ofPOGZ is associated with intellectual disability and autism spectrum disorders.Am. J. Hum. Genet.98, 541–552 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Esmaeeli-Nieh, S. et al. BOD1 is required for cognitive function in humans andDrosophila.PLoS Genet.12, e1006022 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Lugtenberg, D. et al.De novo loss-of-function mutations inWAC cause a recognizable intellectual disability syndrome and learning deficits inDrosophila.Eur. J. Hum. Genet.24, 1145–1153 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Kleefstra, T. et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability.Am. J. Hum. Genet.91, 73–82 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. van Bon, B.W. et al. CEP89 is required for mitochondrial metabolism and neuronal function in man and fly.Hum. Mol. Genet.22, 3138–3151 (2013).

    Article CAS PubMed  Google Scholar 

  43. Willemsen, M.H. et al.GATAD2B loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth inDrosophila.J. Med. Genet.50, 507–514 (2013).

    Article CAS PubMed  Google Scholar 

  44. Schmid, S., Wilson, D.A. & Rankin, C.H. Habituation mechanisms and their importance for cognitive function.Front. Integr. Nuerosci.8, 97 (2015).

    Article  Google Scholar 

  45. Kleinhans, N.M. et al. Reduced neural habituation in the amygdala and social impairments in autism spectrum disorders.Am. J. Psychiatry166, 467–475 (2009).

    Article PubMed  Google Scholar 

  46. Dinstein, I. et al. Unreliable evoked responses in autism.Neuron75, 981–991 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Pellicano, E., Rhodes, G. & Calder, A.J. Reduced gaze aftereffects are related to difficulties categorising gaze direction in children with autism.Neuropsychologia51, 1504–1509 (2013).

    Article PubMed PubMed Central  Google Scholar 

  48. Ethridge, L.E. et al. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome.Transl. Psychiatry6, e787 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Cascio, C.J., Woynaroski, T., Baranek, G.T. & Wallace, M.T. Toward an interdisciplinary approach to understanding sensory function in autism spectrum disorder.Autism Res.9, 920–925 (2016).

    Article PubMed PubMed Central  Google Scholar 

  50. Ramaswami, M. Network plasticity in adaptive filtering and behavioral habituation.Neuron82, 1216–1229 (2014).

    Article CAS PubMed  Google Scholar 

  51. Tartaglia, M. et al. Mutations inPTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.Nat. Genet.29, 465–468 (2001).

    Article CAS PubMed  Google Scholar 

  52. Iossifov, I. et al. Low load for disruptive mutations in autism genes and their biased transmission.Proc. Natl. Acad. Sci. USA112, E5600–E5607 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Sugiura, N., Patel, R.G. & Corriveau, R.A. N-methyl-D-aspartate receptors regulate a group of transiently expressed genes in the developing brain.J. Biol. Chem.276, 14257–14263 (2001).

    Article CAS PubMed  Google Scholar 

  54. Myklebust, L.M. et al. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects.Hum. Mol. Genet.24, 1956–1976 (2015).

    Article CAS PubMed  Google Scholar 

  55. Homsy, J. et al.De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies.Science350, 1262–1266 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  56. van Bokhoven, H. Genetic and epigenetic networks in intellectual disabilities.Annu. Rev. Genet.45, 81–104 (2011).

    Article CAS PubMed  Google Scholar 

  57. Zhu, T. et al. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α.Sci. Rep.6, 26597 (2016).

    Article CAS  Google Scholar 

  58. Griswold, A.J. et al. Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants.Mol. Autism6, 43 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Rhodes, C.T. et al. Cross-species analyses unravel the complexity of H3K27me3 and H4K20me3 in the context of neural stem progenitor cells.Neuroepigenetics6, 10–25 (2016).

    Article PubMed PubMed Central  Google Scholar 

  60. Courchesne, E. et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study.Neurology57, 245–254 (2001).

    Article CAS PubMed  Google Scholar 

  61. Shen, M.D. et al. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.Brain136, 2825–2835 (2013).

    Article PubMed PubMed Central  Google Scholar 

  62. Schumann, C.M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism.J. Neurosci.30, 4419–4427 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  63. Redcay, E. & Courchesne, E. When is the brain enlarged in autism? A meta-analysis of all brain size reports.Biol. Psychiatry58, 1–9 (2005).

    Article PubMed  Google Scholar 

  64. Marchetto, M.C. et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals.Mol. Psychiatryhttp://dx.doi.org/10.1038/mp.2016.95 (2016).

  65. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors.Proc. Natl. Acad. Sci. USA111, E4468–E4477 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment.Nat. Commun.6, 6404 (2015).

    Article CAS PubMed  Google Scholar 

  67. Courchesne, E. et al. Neuron number and size in prefrontal cortex of children with autism.J. Am. Med. Assoc.306, 2001–2010 (2011).

    Article CAS  Google Scholar 

  68. Stoner, R. et al. Patches of disorganization in the neocortex of children with autism.N. Engl. J. Med.370, 1209–1219 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Chow, M.L. et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.PLoS Genet.8, e1002592 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Pramparo, T. et al. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.Mol. Syst. Biol.11, 841 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Geschwind, D.H. et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions.Am. J. Hum. Genet.69, 463–466 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Buxbaum, J.D. et al. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses.Mol. Autism5, 34 (2014).

    Article PubMed PubMed Central  Google Scholar 

  73. Ardlie, K.G. et al.; GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.Science348, 648–660 (2015).

    Article CAS  Google Scholar 

  74. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants.Nat. Genet.46, 310–315 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.Nature536, 285–291 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Feenstra, I. et al. Balanced into array: genome-wide array analysis in 54 patients with an apparently balancedde novo chromosome rearrangement and a meta-analysis.Eur. J. Hum. Genet.19, 1152–1160 (2011).

    Article PubMed PubMed Central  Google Scholar 

  77. Vulto-van Silfhout, A.T. et al. Clinical significance ofde novo and inherited copy-number variation.Hum. Mutat.34, 1679–1687 (2013).

    Article CAS PubMed  Google Scholar 

  78. de Vries, B.B. et al. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist.J. Med. Genet.38, 145–150 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Lord, C., Rutter, M., DiLavore, P.C. & Risi, S.Autism Diagnostic Observation Schedule (Western Psychological Services, 2001).

  80. Lord, C., Rutter, M. & Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.J. Autism Dev. Disord.24, 659–685 (1994).

    Article CAS PubMed  Google Scholar 

  81. Elliott, C.D.Differential Ability Scales: Introductory and Technical Manual 2nd edn. (Harcourt Assessment, 2007).

  82. Fischbach, G.D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors.Neuron68, 192–195 (2010).

    Article CAS PubMed  Google Scholar 

  83. Pescosolido, M.F. et al. Expansion of the clinical phenotype associated with mutations in activity-dependent neuroprotective protein.J. Med. Genet.51, 587–589 (2014).

    Article CAS PubMed  Google Scholar 

  84. Hoyer, J. et al. Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability.Am. J. Hum. Genet.90, 565–572 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Epi4K Consortium. et al.De novo mutations in epileptic encephalopathies.Nature501, 217–221 (2013).

  86. Merner, N. et al. Ade novo frameshift mutation in chromodomain helicase DNA-binding domain 8 (CHD8): A case report and literature review.Am. J. Med. Genet. A.170A, 1225–1235 (2016).

    Article CAS PubMed  Google Scholar 

  87. Kuechler, A. et al.De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum.Hum. Genet.134, 97–109 (2015).

    Article CAS PubMed  Google Scholar 

  88. Tucci, V. et al. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features.J. Clin. Invest.124, 1468–1482 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  89. Winczewska-Wiktor, A. et al. Ade novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report.BMC Neurol.16, 35 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  90. Lozano, R., Vino, A., Lozano, C., Fisher, S.E. & Deriziotis, P. Ade novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment.Eur. J. Hum. Genet.23, 1702–1707 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Sollis, E. et al. Identification and functional characterization ofde novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder.Hum. Mol. Genet.25, 546–557 (2016).

    Article CAS PubMed  Google Scholar 

  92. Adams, D.R. et al. Three rare diseases in one Sib pair:RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity.Mol. Genet. Metab.113, 161–170 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  93. Endele, S. et al. Mutations inGRIN2A andGRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes.Nat. Genet.42, 1021–1026 (2010).

    Article CAS PubMed  Google Scholar 

  94. Freunscht, I. et al. Behavioral phenotype in five individuals withde novo mutations within theGRIN2B gene.Behav. Brain Funct.9, 20 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Lemke, J.R. et al.GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy.Ann. Neurol.75, 147–154 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Cafiero, C. et al. Novelde novo heterozygous loss-of-function variants inMED13L and further delineation of theMED13L haploinsufficiency syndrome.Eur. J. Hum. Genet.23, 1499–1504 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  97. van Haelst, M.M. et al. Further confirmation of theMED13L haploinsufficiency syndrome.Eur. J. Hum. Genet.23, 135–138 (2015).

    Article CAS PubMed  Google Scholar 

  98. Fukai, R. et al. A case of autism spectrum disorder arising from ade novo missense mutation inPOGZ.J. Hum. Genet.60, 277–279 (2015).

    Article CAS PubMed  Google Scholar 

  99. White, J. et al.POGZ truncating alleles cause syndromic intellectual disability.Genome Med.8, 3 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Busa, T. et al. Clinical presentation ofPTEN mutations in childhood in the absence of family history of Cowden syndrome.Eur. J. Paediatr. Neurol.19, 188–192 (2015).

    Article CAS PubMed  Google Scholar 

  101. Buxbaum, J.D. et al. Mutation screening of thePTEN gene in patients with autism spectrum disorders and macrocephaly.Am. J. Med. Genet. B. Neuropsychiatr. Genet.144B, 484–491 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  102. Baasch, A.L. et al. Exome sequencing identifies ade novo SCN2A mutation in a patient with intractable seizures, severe intellectual disability, optic atrophy, muscular hypotonia, and brain abnormalities.Epilepsia55, e25–e29 (2014).

    Article CAS PubMed  Google Scholar 

  103. Dhamija, R., Wirrell, E., Falcao, G., Kirmani, S. & Wong-Kisiel, L.C. Novelde novo SCN2A mutation in a child with migrating focal seizures of infancy.Pediatr. Neurol.49, 486–488 (2013).

    Article PubMed  Google Scholar 

  104. Dimassi, S. et al. Whole-exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome.Clin. Genet.89, 198–204 (2016).

    Article CAS PubMed  Google Scholar 

  105. Nakamura, K. et al. Clinical spectrum ofSCN2A mutations expanding to Ohtahara syndrome.Neurology81, 992–998 (2013).

    Article CAS PubMed  Google Scholar 

  106. Tavassoli, T. et al.De novo SCN2A splice site mutation in a boy with Autism spectrum disorder.BMC Med. Genet.15, 35 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  107. Herenger, Y. et al. Long term follow up of two independent patients with Schinzel-Giedion carryingSETBP1 mutations.Eur. J. Med. Genet.58, 479–487 (2015).

    Article PubMed  Google Scholar 

  108. Miyake, F. et al. West syndrome in a patient with Schinzel-Giedion syndrome.J. Child Neurol.30, 932–936 (2015).

    Article PubMed  Google Scholar 

  109. Takeuchi, A. et al. Progressive brain atrophy in Schinzel-Giedion syndrome with aSETBP1 mutation.Eur. J. Med. Genet.58, 369–371 (2015).

    Article PubMed  Google Scholar 

  110. Stamberger, H. et al.STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy.Neurology86, 954–962 (2016).

    Article CAS PubMed  Google Scholar 

  111. Heinen, C.A. et al. A specific mutation inTBL1XR1 causes Pierpont syndrome.J. Med. Genet.53, 330–337 (2016).

    Article CAS PubMed  Google Scholar 

  112. Keshava Prasad, T.S. et al. Human Protein Reference Database: 2009 update.Nucleic Acids Res.37, D767–D772 (2009).

    Article CAS PubMed  Google Scholar 

  113. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored.Nucleic Acids Res.39, D561–D568 (2011).

    Article CAS PubMed  Google Scholar 

  114. Wheeler, D.L. et al. Database resources of the National Center for Biotechnology.Nucleic Acids Res.31, 28–33 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  115. Attrill, H. et al. FlyBase: establishing a Gene Group resource forDrosophila melanogaster.Nucleic Acids Res.44, D786–D792 (2016).

    Article CAS PubMed  Google Scholar 

  116. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.Development118, 401–415 (1993).

    CAS PubMed  Google Scholar 

  117. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation inDrosophila.Nature448, 151–156 (2007).

    Article CAS PubMed  Google Scholar 

  118. Oortveld, M.A. et al. Human intellectual disability genes form conserved functional modules inDrosophila.PLoS Genet.9, e1003911 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  119. Green, E.W., Fedele, G., Giorgini, F. & Kyriacou, C.P. ADrosophila RNAi collection is subject to dominant phenotypic effects.Nat. Methods11, 222–223 (2014).

    Article CAS PubMed  Google Scholar 

  120. Vissers, J.H., Manning, S.A., Kulkarni, A. & Harvey, K.F. ADrosophila RNAi library modulates Hippo pathway-dependent tissue growth.Nat. Commun.7, 10368 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  121. Kramer, J.M. et al. Epigenetic regulation of learning and memory byDrosophila EHMT/G9a.PLoS Biol.9, e1000569 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  122. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.Nat. Methods9, 676–682 (2012).

    Article CAS PubMed  Google Scholar 

  123. Nijhof, B. et al. A new Fiji-based algorithm that systematically quantifies nine synaptic parameters provides insights intoDrosophila NMJ morphometry.PLoS Comput. Biol.12, e1004823 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the individuals and their families for participation in this study. We acknowledge the ViennaDrosophila Resource Center and BloomingtonDrosophila Stock Center (NIH P40OD018537). This research was supported in part by the following: the Simons Foundation Autism Research Initiative (SFARI 303241) and NIH (R01MH101221) to E.E.E.; VIDI and TOP grants (917-96-346, 912-12-109) from the Netherlands Organization for Scientific Research and Horizon 2020 Marie Sklodowska–Curie European Training Network (MiND, 643051) to A.S.; an NHGRI Interdisciplinary Training in Genome Science grant (T32HG00035) to H.A.F.S. and T.N.T.; Australian NHMRC grants 1091593 and 1041920 and Channel 7 Children's Research Foundation support to J.G.; the National Basic Research Program of China (2012CB517900) and the National Natural Science Foundation of China (81330027, 81525007 and 31400919) to K.X.; the China Scholarship Council (201406370028) and the Fundamental Research Funds for the Central Universities (2012zzts110) to T.W.; National Health and Medical Research Council of Australia Project grants (556759 and 1044175) to I.E.S., P.J.L., and M.B.D., and a Practitioner Fellowship (1006110) to I.E.S.; grants from the Jack Brockhoff Foundation and Perpetual Trustees, the Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS, the Swedish Brain Foundation, the Swedish Research Council, and the Stockholm County Council; the University of California, San Diego Clinical and Translational Research Institute (KL2TR00099 and 1KL2TR001444) to T.P.; and the Research Fund–Flanders (FWO) to R.F.K. and G.V.D.W. We are grateful to all of the families at the participating SSC sites, as well as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. Goin-Kochel, E. Hanson, D. Grice, A. Klin, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, and E. Wijsman). We appreciate access to phenotypic data on SFARI Base. We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium and the participating AGRE families. AGRE is a program of Autism Speaks and is supported in part by grant 1U24MH081810 from the National Institute of Mental Health to C.M. Lajonchere. We thank N. Brown, K. Pereira, T. Vick, T. Desai, C. Green, A.L. Doebley, and L. Grillo for their valuable contributions as well as T. Brown for assistance in editing this manuscript. H.P. is supported as a Senior Clinical Investigator of FWO. E.E.E. is supported as an investigator of the Howard Hughes Medical Institute.

Author information

Author notes
  1. Holly A F Stessman

    Present address: Present address: Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, USA.,

  2. Holly A F Stessman and Bo Xiong: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Genome Sciences, University of Washington, Seattle, Washington, USA

    Holly A F Stessman, Bo Xiong, Bradley P Coe, Kendra Hoekzema, Laura Vives, Janice Lin, Tychele N Turner & Evan E Eichler

  2. Department of Forensic Medicine and Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

    Bo Xiong

  3. State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China

    Tianyun Wang & Kun Xia

  4. Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands

    Michaela Fenckova, Benjamin Harich, Anna Castells-Nobau & Annette Schenck

  5. Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands

    Michaela Fenckova, Benjamin Harich, Anna Castells-Nobau & Annette Schenck

  6. Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden

    Malin Kvarnung, Britt-Marie Anderlid, Ann Nordgren, Anna Lindstrand & Magnus Nordenskjöld

  7. Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden

    Malin Kvarnung, Britt-Marie Anderlid, Ann Nordgren, Anna Lindstrand & Magnus Nordenskjöld

  8. Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA

    Jennifer Gerdts, Sandy Trinh & Raphael A Bernier

  9. Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium

    Nele Cosemans & Hilde Peeters

  10. Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands

    Gijs Santen, Claudia Ruivenkamp, Marjolein Kriek, Arie van Haeringen & Emmelien Aten

  11. School of Medicine and the Robinson Research Institute, the University of Adelaide at the Women's and Children's Hospital, Adelaide, South Australia, Australia

    Kathryn Friend, Eric Haan, Marie Shaw & Jozef Gecz

  12. Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia

    Kathryn Friend & Jozef Gecz

  13. South Australian Clinical Genetics Service, SA Pathology (at the Women's and Children's Hospital), Adelaide, South Australia, Australia

    Jan Liebelt, Christopher Barnett & Eric Haan

  14. South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia

    Jozef Gecz

  15. Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, USA

    Charles Schwartz

  16. Department of Medical Genetics, University of Antwerp, Antwerp, Belgium

    R Frank Kooy, Geert Vandeweyer & Celine Helsmoortel

  17. Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy

    Corrado Romano, Antonino Alberti & Emanuela Avola

  18. Laboratory of Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy

    Mirella Vinci

  19. Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy

    Stefania Giusto

  20. Department of Neurosciences, UC San Diego Autism Center, School of Medicine, University of California San Diego, La Jolla, California, USA

    Eric Courchesne, Tiziano Pramparo, Karen Pierce & Srinivasa Nalabolu

  21. MIND Institute and the University of California Davis School of Medicine, Sacramento, California, USA

    David G Amaral

  22. Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia

    Ingrid E Scheffer, Martin B Delatycki & Paul J Lockhart

  23. Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia

    Ingrid E Scheffer

  24. Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia

    Ingrid E Scheffer

  25. Victorian Clinical Genetics Services, Parkville, Victoria, Australia

    Martin B Delatycki

  26. Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia

    Martin B Delatycki & Paul J Lockhart

  27. Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA.,

    Fereydoun Hormozdiari

  28. Howard Hughes Medical Institute, Seattle, Washington, USA

    Evan E Eichler

Authors
  1. Holly A F Stessman

    You can also search for this author inPubMed Google Scholar

  2. Bo Xiong

    You can also search for this author inPubMed Google Scholar

  3. Bradley P Coe

    You can also search for this author inPubMed Google Scholar

  4. Tianyun Wang

    You can also search for this author inPubMed Google Scholar

  5. Kendra Hoekzema

    You can also search for this author inPubMed Google Scholar

  6. Michaela Fenckova

    You can also search for this author inPubMed Google Scholar

  7. Malin Kvarnung

    You can also search for this author inPubMed Google Scholar

  8. Jennifer Gerdts

    You can also search for this author inPubMed Google Scholar

  9. Sandy Trinh

    You can also search for this author inPubMed Google Scholar

  10. Nele Cosemans

    You can also search for this author inPubMed Google Scholar

  11. Laura Vives

    You can also search for this author inPubMed Google Scholar

  12. Janice Lin

    You can also search for this author inPubMed Google Scholar

  13. Tychele N Turner

    You can also search for this author inPubMed Google Scholar

  14. Gijs Santen

    You can also search for this author inPubMed Google Scholar

  15. Claudia Ruivenkamp

    You can also search for this author inPubMed Google Scholar

  16. Marjolein Kriek

    You can also search for this author inPubMed Google Scholar

  17. Arie van Haeringen

    You can also search for this author inPubMed Google Scholar

  18. Emmelien Aten

    You can also search for this author inPubMed Google Scholar

  19. Kathryn Friend

    You can also search for this author inPubMed Google Scholar

  20. Jan Liebelt

    You can also search for this author inPubMed Google Scholar

  21. Christopher Barnett

    You can also search for this author inPubMed Google Scholar

  22. Eric Haan

    You can also search for this author inPubMed Google Scholar

  23. Marie Shaw

    You can also search for this author inPubMed Google Scholar

  24. Jozef Gecz

    You can also search for this author inPubMed Google Scholar

  25. Britt-Marie Anderlid

    You can also search for this author inPubMed Google Scholar

  26. Ann Nordgren

    You can also search for this author inPubMed Google Scholar

  27. Anna Lindstrand

    You can also search for this author inPubMed Google Scholar

  28. Charles Schwartz

    You can also search for this author inPubMed Google Scholar

  29. R Frank Kooy

    You can also search for this author inPubMed Google Scholar

  30. Geert Vandeweyer

    You can also search for this author inPubMed Google Scholar

  31. Celine Helsmoortel

    You can also search for this author inPubMed Google Scholar

  32. Corrado Romano

    You can also search for this author inPubMed Google Scholar

  33. Antonino Alberti

    You can also search for this author inPubMed Google Scholar

  34. Mirella Vinci

    You can also search for this author inPubMed Google Scholar

  35. Emanuela Avola

    You can also search for this author inPubMed Google Scholar

  36. Stefania Giusto

    You can also search for this author inPubMed Google Scholar

  37. Eric Courchesne

    You can also search for this author inPubMed Google Scholar

  38. Tiziano Pramparo

    You can also search for this author inPubMed Google Scholar

  39. Karen Pierce

    You can also search for this author inPubMed Google Scholar

  40. Srinivasa Nalabolu

    You can also search for this author inPubMed Google Scholar

  41. David G Amaral

    You can also search for this author inPubMed Google Scholar

  42. Ingrid E Scheffer

    You can also search for this author inPubMed Google Scholar

  43. Martin B Delatycki

    You can also search for this author inPubMed Google Scholar

  44. Paul J Lockhart

    You can also search for this author inPubMed Google Scholar

  45. Fereydoun Hormozdiari

    You can also search for this author inPubMed Google Scholar

  46. Benjamin Harich

    You can also search for this author inPubMed Google Scholar

  47. Anna Castells-Nobau

    You can also search for this author inPubMed Google Scholar

  48. Kun Xia

    You can also search for this author inPubMed Google Scholar

  49. Hilde Peeters

    You can also search for this author inPubMed Google Scholar

  50. Magnus Nordenskjöld

    You can also search for this author inPubMed Google Scholar

  51. Annette Schenck

    You can also search for this author inPubMed Google Scholar

  52. Raphael A Bernier

    You can also search for this author inPubMed Google Scholar

  53. Evan E Eichler

    You can also search for this author inPubMed Google Scholar

Contributions

E.E.E., H.A.F.S., B.X., and B.P.C. designed the study. H.A.F.S., B.X., T.W., K.H., L.V., and J. Lin performed the experiments. B.P.C. assisted with smMIP design and data analysis. F.H. performed the gene network analysis. R.A.B., J. Gerdts, and S.T. analyzed the patient data. B.X., M.F., B.H., and A.C.-N. performed and analyzed theDrosophila experiments. Other authors participated in the sample collection and DNA extraction and/or preparation. E.E.E., H.A.F.S., B.P.C., B.X., A.S., M.F., and R.A.B. wrote the manuscript with input from all authors. B.P.C. and T.W. contributed equally to this effort and should be regarded as joint second authors.

Corresponding author

Correspondence toEvan E Eichler.

Ethics declarations

Competing interests

E.E.E. is on the scientific advisory board of DNAnexus, Inc., and was a member of the scientific advisory boards of Pacific Biosciences, Inc. (2009–2013) and SynapDx Corp. (2011–2013); E.E.E. is a consultant for Kunming University of Science and Technology (KUST) as part of the 1000 China Talent Program.

Integrated supplementary information

Supplementary Figure 1 smMIP quality control for the Gold pool.

For 960 sibling control samples, the frequency of samples (y-axis) that reach at least 8X coverage for each individual smMIP (x-axis) is plotted as a boxplot by gene.

Supplementary Figure 2 smMIP quality control for the ASD4 pool.

For 960 sibling control samples, the frequency of samples (y-axis) that reach at least 8X coverage for each individual smMIP (x-axis) is plotted as a boxplot by gene.

Supplementary Figure 3 smMIP quality control for the ASD5 pool.

For 960 sibling control samples, the frequency of samples (y-axis) that reach at least 8X coverage for each individual smMIP (x-axis) is plotted as a boxplot by gene.

Supplementary Figure 4 smMIP quality control for the ASD6 pool.

For 960 sibling control samples, the frequency of samples (y-axis) that reach at least 8X coverage for each individual smMIP (x-axis) is plotted as a boxplot by gene.

Supplementary Figure 5 Summary of private events identified in the study.

(a) Private events identified split by LGD and MIS30 variants in probands (orange), unaffected siblings (gray), and discordant siblings (i.e., a proband and sibling in the same family both share the event; black). (b) Number of private events identified per individual. (c) Private events split by LGD and MIS30 variants found to bede novo (orange), inherited (blue), validated by Sanger with unknown inheritance (light gray), Sanger validation failed (dark gray), and false+ (black). (d)De novo private events split by LGD and MIS30 variants into probands (orange) and unaffected siblings (gray). Dark orange represents new events in the study and light orange published events (all found in probands). (e) Inherited private events split by LGD and MIS30 variants into paternal (blue), maternal (orange) and unknown parent (gray).

Supplementary Figure 6De novo (DN) significance is correlated with the number of ultra-rare/private DN variants identified.

The total number of DN proband LGD mutations is plotted on they-axis against the FDR-corrected DN LGDP value on thex-axis for each gene. New DN events identified in this study were considered in addition to published studies of ASD, ID, and DD (Supplementary Table 15). Dashed gray lines indicate an FDR cutoff of 5% (q = 0.1) and a DN LGD proband count = 2.

Supplementary Figure 7 Inheritance patterns by gene count.

Plot of paternal (y-axis) or maternal (x-axis) inheritance counts by gene where at least one inherited event was identified in the smMIP dataset combined with published private inherited events in the SSC. Gene labels identify genes with a frequency >0.75 for either paternal or maternal inheritance where at least four inherited events have been identified.

Supplementary Figure 8 Genes exhibiting ASD and ID specificity by mutation type.

(a,b) Shown are the combined counts of private LGD (a) and MIS30 (b) events for each gene in our panel from probands in our study, publishedde novo events from ASD, ID, and DD proband studies, and published private inherited events from the SSC. Probands were scored as having ASD or ID (including DD) based on the primary ascertainment diagnosis of the cohort from which the case was sampled (Fig. 1 and published reports). Genes were tested for a bias of LGD and MIS30 events to one phenotype (ASD or ID) by two one-tailed binomial tests (P < 0.025 for either bias). The solid line indicates equal proportions of mutations corrected for the screened population size. Significant genes are indicated in red and labeled with gene names while the significance threshold is indicated as a dashed line.

Supplementary Figure 9 NMJ morphology changes inDrosophila knockdown models.

NMJ morphology is affected indom (fly ortholog ofSRCAP, VDRC #7787) andda (ortholog ofTCF4, VDRC #105258) pan-neuronal knockdown flies. Two furtherda RNAi lines (VDRC #51297, #51300) confirmed a significant increase of branches and branching points (not shown). Top: representative Dlg staining of L3 wandering larva NMJs, body wall muscle 4, segment 3 ofdom (SRCAP) andda (TCF4) knockdown larvae and their genetic background controls, respectively. Bottom: quantifications of NMJ area, perimeter, length, branching, bouton numbers for over 30 NMJs per genotype.Dom knockdown data is shown in dark red on the left andda knockdown data in light red on the right. Error bars are standard error of the mean. *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed Student’st-test). Exact statistical values:SRCAP (dom), NMJ areaP = 0.0012 df = 60, lengthP = 0.0184 df = 65, boutonsP = 0.0771 df = 73, perimeterP = 0.0001 df = 60;TCF4 (da), NMJ areaP = 0.0003 df = 63, lengthP = 0,0128 df = 68, branchesP = 0.0009 df = 68, branching pointsP = 0.0390 df = 68.

Supplementary Figure 10 Probands carrying three private events in the study.

(a-i) Pedigrees show individuals carrying three private LGD (red) or MIS30 (blue) events identified in this study. Where available, inheritance is indicated (de novo or inherited). *Genes that reach DN significance in the study.Genes that show private disruptive burden in the study.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1, 8–10 and 19–23, and Supplementary Note (PDF 2263 kb)

Supplementary Tables

Supplementary Tables 2–7 and 11–18 (XLSX 7173 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stessman, H., Xiong, B., Coe, B.et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases.Nat Genet49, 515–526 (2017). https://doi.org/10.1038/ng.3792

Download citation

Access through your institution
Buy or subscribe

Associated content

Resequencing at scale in neurodevelopmental disorders

  • David R FitzPatrick
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp