Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Climate Change
  • Letter
  • Published:

Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Nature Climate Changevolume 6pages402–406 (2016)Cite this article

Subjects

Abstract

Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions1,2,3,4,5. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling6,7,8 driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation)9,10 indicates that enhanced weathering could lower atmospheric CO2 by 30–300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m−2 yr−1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems11,12,13,14. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions15.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced weathering from pulverized silicate rock additions to the tropics increases CO2 consumption.
Figure 2: Enhanced weathering lowers atmospheric CO2 with projected twenty-first-century climate change.
Figure 3: Enhanced weathering ameliorates future ocean acidification caused by projected twenty-first-century increases in atmospheric CO2.
Figure 4: Enhanced weathering raises the aragonite saturation state of the ocean by 2100.

Similar content being viewed by others

References

  1. Seifritz, W. CO2 disposal by means of silicates.Nature345, 486 (1990).

    Article  Google Scholar 

  2. Schuiling, R. D. & Krijgsman, P. Enhanced weathering: An effective and cheap tool to sequester CO2 .Climatic Change74, 349–354 (2006).

    Article CAS  Google Scholar 

  3. Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine.Proc. Natl Acad. Sci. USA107, 20228–20233 (2010).

    Article  Google Scholar 

  4. Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification.Rev. Geophys.51, 113–149 (2013).

    Article  Google Scholar 

  5. Moosdorf, N., Renforth, P. & Hartmann, J. Carbon dioxide efficiency of terrestrial enhanced weathering.Environ. Sci. Technol.48, 4809–4816 (2014).

    Article CAS  Google Scholar 

  6. Taylor, L. L., Banwart, S. A., Leake, J. R. & Beerling, D. J. Modeling the evolutionary rise of ectomycorrhiza on sub-surface weathering environments and the geochemical carbon cycle.Am. J. Sci.311, 369–403 (2011).

    Article CAS  Google Scholar 

  7. Taylor, L. L., Banwart, S. A., Valdes, P. J., Leake, J. R. & Beerling, D. J. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: A global-scale process-based approach.Phil. Trans. R. Soc. B367, 565–582 (2012).

    Article CAS  Google Scholar 

  8. Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2 .Biogeosciences6, 375–390 (2009).

    Article CAS  Google Scholar 

  9. Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach.Earth Syst. Dynam.4, 219–236 (2013).

    Article  Google Scholar 

  10. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design.Bull. Am. Meteorol. Soc.93, 485–498 (2011).

    Article  Google Scholar 

  11. Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH.Nature425, 365 (2003).

    Article CAS  Google Scholar 

  12. Ciais, P. et al. inClimate change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6, 465–570 (Cambridge Univ. Press, 2013).

    Google Scholar 

  13. Turley, C. et al. The societal challenge of ocean acidification.Mar. Pollut. Bull.60, 787–792 (2010).

    Article CAS  Google Scholar 

  14. Ricke, K. L., Orr, J. C., Schneider, K. & Caldeira, K. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections.Environ. Res. Lett.8, 034003 (2013).

    Article  Google Scholar 

  15. Caldeira, K., Bala, G. & Cao, L. The science of geoengineering.Annu. Rev. Earth Planet. Sci.41, 231–256 (2013).

    Article CAS  Google Scholar 

  16. United Nations Framework Convention on Climate Change (1992);http://www.unfccc.int.

  17. Hansen, J. et al. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature.PLoS ONE8, e81648 (2013).

    Article  Google Scholar 

  18. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (Committee on Geoengineering Climate: Technical Evaluation and Discussion of Impacts; Board on Atmospheric Sciences and Climate; Ocean Studies Board; Division on Earth and Life Studies; National Research Council, National Academy of Sciences, 2015).

  19. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S. & Köhler, P. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?Glob. Planet. Change69, 185–194 (2009).

    Article  Google Scholar 

  20. Wignall, P. B. Large igneous provinces and mass extinctions.Earth Sci. Rev.53, 1–33 (2001).

    Article CAS  Google Scholar 

  21. Hilf, H. H. Die Düngung mit Basaltabfällen.Forstarchiv14, 93–101 (1938).

    CAS  Google Scholar 

  22. de Villiers, O. D. Soil rejuvenation with crushed basalt in Mauritius Part I: Consistent results of world-wide interests.Int. Sugar J.63, 363–364 (1961).

    Google Scholar 

  23. Anda, M., Shamshuddin, J. & Fauziah, C. I. Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions.Soil Tillage Res.132, 1–11 (2013).

    Article  Google Scholar 

  24. Gillman, G. P., Burkett, D. C. & Coventry, R. J. Amending highly weathered soils with finely ground basalt rock.Appl. Geochem.17, 987–1001 (2002).

    Article CAS  Google Scholar 

  25. Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C.Nature Commun.6, 7958 (2015).

    Article CAS  Google Scholar 

  26. Köhler, P., Abrams, J. F., Völker, C., Hauck, J. & Wolf-Gladrow, D. A. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology.Environ. Res. Lett.8, 014009 (2013).

    Article  Google Scholar 

  27. Hangx, S. J. T. & Spiers, C. J. Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability.Int. J. Greenhouse Gas Control3, 757–767 (2009).

    Article CAS  Google Scholar 

  28. Geoengineering the Climate: Science, Governance and Uncertainty Report No. RS1636 (The Royal Society, 2009).

  29. Bernard, C. Y., Dürr, H. H., Heinze, C., Segschneider, J. & Maier-Reimer, E. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean—a model study.Biogeosciences8, 551–564 (2011).

    Article CAS  Google Scholar 

  30. Quirk, J., Andrews, M. Y., Leake, J. R., Banwart, S. A. & Beerling, D. J. Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes.Biol. Lett.10, 1006–1011 (2014).

    Article  Google Scholar 

  31. Brantley, S. L. inKinetics of Water-Rock Interaction (eds Brantley, S. L., Kubicki, J. D. & Art White, F.) Ch. 5, 151–210 (Springer, 2008).

    Book  Google Scholar 

  32. Woodward, F. I. & Lomas, M. R. Vegetation dynamics—simulating responses to climatic change.Biol. Rev.79, 643–670 (2004).

    Article CAS  Google Scholar 

  33. Bartholomé, E. & Belward, A. S. GLC2000: A new approach to global land cover mapping from Earth observation data.Int. J. Remote Sens.26, 1959–1977 (2005).

    Article  Google Scholar 

  34. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 .Proc. Natl Acad. Sci. USA111, 3280–3285 (2014).

    Article CAS  Google Scholar 

  35. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs).Glob. Change Biol.14, 2015–2039 (2008).

    Article  Google Scholar 

  36. Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface.Geochem. Geophys. Geosyst.13, Q12004 (2012).

    Article  Google Scholar 

  37. Palandri, J. L. & Kharaka, Y. K.A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling Report No. 2004-1068, 1–64 (US Geological Survey, 2004).

  38. White, A. F. & Brantley, S. L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?Chem. Geol.202, 479–506 (2003).

    Article CAS  Google Scholar 

  39. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers.Chem. Geol.159, 3–30 (1999).

    Article CAS  Google Scholar 

  40. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids.Int. J. Climatol.25, 693–712 (2005).

    Article  Google Scholar 

  41. FAO GEONETWORK (FAO, 2014).

  42. Gislason, S. R. et al. Direct evidence of the feedback between climate and weathering.Earth Planet. Sci. Lett.277, 213–222 (2009).

    Article CAS  Google Scholar 

  43. Beaulieu, E., Godderis, Y., Donnadieu, Y., Labat, D. & Roelandt, C. High sensitivity of the continental-weathering carbon dioxide sink to future climate change.Nature Clim. Change2, 346–349 (2012).

    Article CAS  Google Scholar 

  44. Nockolds, S. R. Average chemcal compositions of some igneous rocks.Geol. Soc. Am. Bull.65, 1007–1032 (1954).

    Article CAS  Google Scholar 

  45. Kogel, J. E., Trivedi, N. C., Barker, J. M. & Krukowski, S. T.Industrial Minerals and Rocks—Commodities, Markets, and Uses 7th edn (Society for Mining, Metallurgy, and Exploration, 2006).

    Google Scholar 

  46. Magaritz, M. & Taylor, H. P. Oxygen and hydrogen isotope studies of serpentinization in Troodos ophiolite complex, Cyprus.Earth Planet. Sci. Lett.23, 8–14 (1974).

    Article CAS  Google Scholar 

  47. Price, A. R., Myerscough, R. J., Voutchkov, I. I., Marsh, R. & Cox, S. J. Multi-objective optimization of GENIE Earth system models.Phil. Trans. R. Soc. A367, 2623–2633 (2009).

    Article  Google Scholar 

  48. Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling.Biogeosciences4, 87–104 (2007).

    Article CAS  Google Scholar 

  49. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide.Annu. Rev. Earth Planet. Sci.37, 117–134 (2009).

    Article CAS  Google Scholar 

  50. Eby, M. et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity.Clim. Past9, 1111–1140 (2013).

    Article  Google Scholar 

  51. Goodwin, P., Williams, R. G., Ridgwell, A. & Follows, M. J. Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry.Nature Geosci.2, 145–150 (2009).

    Article CAS  Google Scholar 

  52. Annan, J. D. & Hargreaves, J. C. Efficient identification of ocean thermodynamics in a physical/biogeochemical ocean model with an iterative Importance Sampling method.Ocean Model.32, 205–215 (2010).

    Article  Google Scholar 

  53. Doney, S. C., Lindsay, K., Fung, I. & John, J. Natural variability in a stable, 1000-yr global coupled climate—carbon cycle simulation.J. Clim.19, 3033–3054 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Goddéris and P. Renforth for helpful comments on the manuscript, T. Elliot for earlier discussions, and gratefully acknowledge funding through an ERC Advanced grant to D.J.B. (CDREG, 32998). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (Supplementary Table 1) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

  1. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

    Lyla L. Taylor, Joe Quirk, Rachel M. S. Thorley & David J. Beerling

  2. Earth Institute, Columbia University, 475 Riverside Drive, New York 10027, USA

    Pushker A. Kharecha & James Hansen

  3. Goddard Institute for Space Studies, NASA, 2880 Broadway, New York 10025, USA

    Pushker A. Kharecha

  4. Department of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK

    Andy Ridgwell

  5. Department of Earth Sciences, University of California, Riverside, California 92521, USA

    Andy Ridgwell

  6. Department of Mathematics, University of Sheffield, Sheffield S10 2TN, UK

    Mark R. Lomas

  7. Kroto Research Institute, North Campus, University of Sheffield, Sheffield S3 7HQ, UK

    Steve A. Banwart

Authors
  1. Lyla L. Taylor

    You can also search for this author inPubMed Google Scholar

  2. Joe Quirk

    You can also search for this author inPubMed Google Scholar

  3. Rachel M. S. Thorley

    You can also search for this author inPubMed Google Scholar

  4. Pushker A. Kharecha

    You can also search for this author inPubMed Google Scholar

  5. James Hansen

    You can also search for this author inPubMed Google Scholar

  6. Andy Ridgwell

    You can also search for this author inPubMed Google Scholar

  7. Mark R. Lomas

    You can also search for this author inPubMed Google Scholar

  8. Steve A. Banwart

    You can also search for this author inPubMed Google Scholar

  9. David J. Beerling

    You can also search for this author inPubMed Google Scholar

Contributions

D.J.B. conceived the study with input from all co-authors. L.L.T. undertook weathering model development and simulations, J.Q. and R.M.S.T. undertook data analyses, P.A.K. and A.R. provided model set-up support and advice, M.R.L. analysed the CMIP5 climates. D.J.B. led the writing with contributions from all co-authors, especially J.H., A.R., J.Q. and L.L.T.

Corresponding author

Correspondence toDavid J. Beerling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, L., Quirk, J., Thorley, R.et al. Enhanced weathering strategies for stabilizing climate and averting ocean acidification.Nature Clim Change6, 402–406 (2016). https://doi.org/10.1038/nclimate2882

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing Microbiology

Sign up for theNature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: Microbiology

[8]ページ先頭

©2009-2025 Movatter.jp