- Perspective
- Published:
Natural expansion of the genetic code
Nature Chemical Biologyvolume 3, pages29–35 (2007)Cite this article
7345Accesses
254Citations
17Altmetric
Abstract
At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Extensive breaking of genetic code degeneracy with non-canonical amino acids

The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases
References
Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis.Annu. Rev. Biochem.69, 617–650 (2000).
Ibba, M. & Söll, D. Aminoacyl-tRNAs: setting the limits of the genetic code.Genes Dev.18, 731–738 (2004).
Uy, R. & Wold, F. Posttranslational covalent modification of proteins.Science198, 890–896 (1977).
Furter, R. Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation inEscherichia coli.Protein Sci.7, 419–426 (1998).
Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code.Annu. Rev. Biophys. Biomol. Struct.35, 225–249 (2006).
Köhrer, C. & RajBhandary, U.L. inThe Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C.S. & Cusack, S.) 353–363 (Landes Bioscience, Georgetown, Texas, USA, 2005).
Crick, F.H.C. The origin of the genetic code.J. Mol. Biol.38, 367–379 (1968).
Woese, C.R. On the evolution of the genetic code.Proc. Natl. Acad. Sci. USA54, 1546–1552 (1965).
Osawa, S., Jukes, T.H., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code.Microbiol. Rev.56, 229–264 (1992).
Knight, R.D., Freeland, S.J. & Landweber, L.F. Rewiring the keyboard: evolvability of the genetic code.Nat. Rev. Genet.2, 49–58 (2001).
Santos, M.A., Moura, G., Massey, S.E. & Tuite, M.F. Driving change: the evolution of alternative genetic codes.Trends Genet.20, 95–102 (2004).
Miranda, I., Silva, R. & Santos, M.A. Evolution of the genetic code in yeasts.Yeast23, 203–213 (2006).
Crick, F.H.C. Codon–anticodon pairing: the wobble hypothesis.J. Mol. Biol.19, 548–555 (1966).
Söll, D. et al. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique.J. Mol. Biol.19, 556–573 (1966).
Kisselev, L., Ehrenberg, M. & Frolova, L. Termination of translation: interplay of mRNA, rRNAs and release factors?EMBO J.22, 175–182 (2003).
Eggertsson, G. & Söll, D. Transfer ribonucleic acid-mediated suppression of termination codons inEscherichia coli.Microbiol. Rev.52, 354–374 (1988).
Söll, D. Genetic code: enter a new amino acid.Nature331, 662–663 (1988).
Schön, A., Böck, A., Ott, G., Sprinzl, M. & Söll, D. The selenocysteine-inserting opal suppressor serine tRNA fromE. coli is highly unusual in structure and modification.Nucleic Acids Res.17, 7159–7165 (1989).
Böck, A., Thanbichler, M., Rother, M. & Resch, A. inThe Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C.S. & Cusack, S.) 320–327 (Landes Bioscience, Georgetown, Texas, USA, 2005).
Hao, B. et al. A new UAG-encoded residue in the structure of a methanogen methyltransferase.Science296, 1462–1466 (2002).
Srinivasan, G., James, C.M. & Krzycki, J.A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA.Science296, 1459–1462 (2002).
Polycarpo, C. et al. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.Proc. Natl. Acad. Sci. USA101, 12450–12454 (2004).
Blight, S.K. et al. Direct charging of tRNACUA with pyrrolysinein vitro andin vivo.Nature431, 333–335 (2004).
Heckman, J.E., Sarnoff, J., Alzner-DeWeerd, B., Yin, S. & RajBhandary, U.L. Novel features in the genetic code and codon reading patterns inNeurospora crassa mitochondria based on sequences of six mitochondrial tRNAs.Proc. Natl. Acad. Sci. USA77, 3159–3163 (1980).
Yarus, M. Translational efficiency of transfer RNA's: uses of an extended anticodon.Science218, 646–652 (1982).
Agris, P.F. Decoding the genome: a modified view.Nucleic Acids Res.32, 223–238 (2004).
Tomita, K., Ueda, T. & Watanabe, K. 7-Methylguanosine at the anticodon wobble position of squid mitochondrial tRNASer GCU: molecular basis for assignment of AGA/AGG codons as serine in invertebrate mitochondria.Biochim. Biophys. Acta1399, 78–82 (1998).
Tomita, K., Ueda, T. & Watanabe, K. The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria.Nucleic Acids Res.27, 1683–1689 (1999).
Suzuki, T., Ueda, T. & Watanabe, K. The 'polysemous' codon–a codon with multiple amino acid assignment caused by dual specificity of tRNA identity.EMBO J.16, 1122–1134 (1997).
Min, B. et al. Protein synthesis inEscherichia coli with mischarged tRNA.J. Bacteriol.185, 3524–3526 (2003).
Mehl, R.A. et al. Generation of a bacterium with a 21 amino acid genetic code.J. Am. Chem. Soc.125, 935–939 (2003).
Vetsigian, K., Woese, C. & Goldenfeld, N. Collective evolution and the genetic code.Proc. Natl. Acad. Sci. USA103, 10696–10701 (2006).
Rayman, M.P. The importance of selenium to human health.Lancet356, 233–241 (2000).
Cone, J.E., Del Rio, R.M., Davis, J.N. & Stadtman, T.C. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety.Proc. Natl. Acad. Sci. USA73, 2659–2663 (1976).
Fu, L.H. et al. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine inChlamydomonas reinhardtii glutathione peroxidase.J. Biol. Chem.277, 25983–25991 (2002).
Obata, T. & Shiraiwa, Y. A novel eukaryotic selenoprotein in the haptophyte algaEmiliania huxleyi.J. Biol. Chem.280, 18462–18468 (2005).
Hatfield, D., Choi, I.S., Mischke, S. & Owens, L.D. Selenocysteyl-tRNAs recognize UGA inBeta vulgaris, a higher plant, and inGliocladium virens, a filamentous fungus.Biochem. Biophys. Res. Commun.184, 254–259 (1992).
Kryukov, G.V. et al. Characterization of mammalian selenoproteomes.Science300, 1439–1443 (2003).
Kryukov, G.V. & Gladyshev, V.N. The prokaryotic selenoproteome.EMBO Rep.5, 538–543 (2004).
Johansson, L., Gafvelin, G. & Arner, E.S. Selenocysteine in proteins-properties and biotechnological use.Biochim. Biophys. Acta1726, 1–13 (2005).
Zhang, Y., Romero, H., Salinas, G. & Gladyshev, V.N. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox-active cysteine residues.Genome Biol.7, R94 (2006).
Baron, C., Heider, J. & Böck, A. Mutagenesis ofselC, the gene for the selenocysteine-inserting tRNA-species inE. coli: effects onin vivo function.Nucleic Acids Res.18, 6761–6766 (1990).
Forchhammer, K., Boesmiller, K. & Böck, A. The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine.Biochimie73, 1481–1486 (1991).
Tormay, P. et al. Bacterial selenocysteine synthase–structural and functional properties.Eur. J. Biochem.254, 655–661 (1998).
Leinfelder, W., Stadtman, T.C. & Böck, A. Occurrencein vivo of selenocysteyl-tRNASerUCA inEscherichia coli. Effect of sel mutations.J. Biol. Chem.264, 9720–9723 (1989).
Forster, C., Ott, G., Forchhammer, K. & Sprinzl, M. Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu fromE. coli.Nucleic Acids Res.18, 487–491 (1990).
Forchhammer, K., Leinfelder, W. & Böck, A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein.Nature342, 453–456 (1989).
Wu, X.Q. & Gross, H.J. The long extra arms of human tRNA(Ser)Sec and tRNASer function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner.Nucleic Acids Res.21, 5589–5594 (1993).
Sturchler-Pierrat, C. et al. Selenocysteylation in eukaryotes necessitates the uniquely long aminoacyl acceptor stem of selenocysteine tRNASec.J. Biol. Chem.270, 18570–18574 (1995).
Ohama, T., Yang, D.C. & Hatfield, D.L. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.Arch. Biochem. Biophys.315, 293–301 (1994).
Geslain, R. et al. Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec.J. Biol. Chem., published online 13 October 2006 (doi:10.1074/jbc.M607862200).
Kaiser, J.T. et al. Structural and functional investigation of a putative archaeal selenocysteine synthase.Biochemistry44, 13315–13327 (2005).
Rother, M., Wilting, R., Commans, S. & Böck, A. Identification and characterization of the selenocysteine-specific translation factor SelB from the archaeonMethanococcus jannaschii.J. Mol. Biol.299, 351–358 (2000).
Bilokapic, S., Korencic, D., Söll, D. & Weygand-Durasevic, I. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life.Eur. J. Biochem.271, 694–702 (2004).
Allmang, C. & Krol, A. Selenoprotein synthesis: UGA does not end the story.Biochimie88, 1561–1571 (2006).
Carlson, B.A. et al. Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.Proc. Natl. Acad. Sci. USA101, 12848–12853 (2004).
Mäenpää, P.H. & Bernfield, M.R. A specific hepatic transfer RNA for phosphoserine.Proc. Natl. Acad. Sci. USA67, 688–695 (1970).
Sharp, S.J. & Stewart, T.S. The characterization of phosphoseryl tRNA from lactating bovine mammary gland.Nucleic Acids Res.4, 2123–2136 (1977).
Sauerwald, A. et al. RNA-dependent cysteine biosynthesis in archaea.Science307, 1969–1972 (2005).
Gelpi, C., Sontheimer, E.J. & Rodriguez-Sanchez, J.L. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion.Proc. Natl. Acad. Sci. USA89, 9739–9743 (1992).
Kernebeck, T., Lohse, A.W. & Grötzinger, J. A bioinformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigen/liver pancreas.Hepatology34, 230–233 (2001).
Yuan, J. et al. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.Proc. Natl. Acad. Sci. USA103, 18923–18927 (2006).
Small-Howard, A. et al. Supramolecular complexes mediate selenocysteine incorporationin vivo.Mol. Cell. Biol.26, 2337–2346 (2006).
Guimaraes, M.J. et al. Identification of a novelselD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism?Proc. Natl. Acad. Sci. USA93, 15086–15091 (1996).
Boone, D.R., Whitman, W.B. & Rouvière, P. inMethanogenesis (ed. Ferry, J.G.) 35–80 (Chapman & Hall, New York, 1993).
Krzycki, J.A. Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases.Curr. Opin. Chem. Biol.8, 484–491 (2004).
Hao, B. et al. Reactivity and chemical synthesis ofL-pyrrolysine- the 22nd genetically encoded amino acid.Chem. Biol.11, 1317–1324 (2004).
Soares, J.A. et al. The residue mass ofL-pyrrolysine in three distinct methylamine methyltransferases.J. Biol. Chem.280, 36962–36969 (2005).
Polycarpo, C. et al. Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases.Mol. Cell12, 287–294 (2003).
Zhang, Y., Baranov, P.V., Atkins, J.F. & Gladyshev, V.N. Pyrrolysine and selenocysteine use dissimilar decoding strategies.J. Biol. Chem.280, 20740–20751 (2005).
Fu, S.L. & Dean, R.T. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins.Biochem. J.324, 41–48 (1997).
Zhang, M. et al. Structures of theEscherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.Biochemistry43, 12539–12548 (2004).
Théobald-Dietrich, A., Frugier, M., Giegé, R. & Rudinger-Thirion, J. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA.Nucleic Acids Res.32, 1091–1096 (2004).
Namy, O., Rousset, J.P., Napthine, S. & Brierley, I. Reprogrammed genetic decoding in cellular gene expression.Mol. Cell13, 157–168 (2004).
Théobald-Dietrich, A., Giegé, R. & Rudinger-Thirion, J. Evidence for the existence in mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into proteins.Biochimie87, 813–817 (2005).
Polycarpo, C.R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.FEBS Lett., published online 20 November 2006 (doi:10.1016/j.febslet.2006.11.028).
Li, T. et al. Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis.FEBS Lett.462, 302–306 (1999).
Stathopoulos, C. et al. Cysteinyl-tRNA synthetase is not essential for viability of the archaeonMethanococcus maripaludis.Proc. Natl. Acad. Sci. USA98, 14292–14297 (2001).
Hohn, M.J., Park, H.-S., O'Donoghue, P., Schnitzbauer, M. & Söll, D. Emergence of the universal genetic code imprinted in an RNA record.Proc. Natl. Acad. Sci. USA103, 18095–18100 (2006).
Ibba, M., Bono, J.L., Rosa, P.A. & Söll, D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirocheteBorrelia burgdorferi.Proc. Natl. Acad. Sci. USA94, 14383–14388 (1997).
Korencic, D., Polycarpo, C., Weygand-Durasevic, I. & Söll, D. Differential modes of transfer RNASer recognition inMethanosarcina barkeri.J. Biol. Chem.279, 48780–48786 (2004).
Mazauric, M.H. et al. Glycyl-tRNA synthetase fromThermus thermophilus—wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems.Eur. J. Biochem.251, 744–757 (1998).
Mazauric, M.H., Roy, H. & Kern, D. tRNA glycylation system fromThermus thermophilus. tRNAGly identity and functional interrelation with the glycylation systems from other phylae.Biochemistry38, 13094–13105 (1999).
Murphy, F.V. IV, Ramakrishnan, V., Malkiewicz, A. & Agris, P.F. The role of modifications in codon discrimination by tRNALys UUU .Nat. Struct. Mol. Biol.11, 1186–1191 (2004).
Acknowledgements
We thank P. Agris for critical comments on the paper. S.P. holds a fellowship of the Yale University School of Medicine MD/PhD Program. Work in the authors' laboratory was supported by grants from the US National Institute of General Medical Sciences (GM22854), the US Department of Energy (DE-FG02-98ER20311) and the US National Science Foundation (DBI-0535566).
Author information
Authors and Affiliations
Alexandre Ambrogelly and Sotiria Palioura are in the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 06520-8114, Connecticut, USA
Alexandre Ambrogelly, Sotiria Palioura & Dieter Söll
the Department of Molecular Biophysics and Biochemistry and the Department of Chemistry, Yale University, New Haven, 06520-8114, Connecticut, USA
Dieter Söll
- Alexandre Ambrogelly
You can also search for this author inPubMed Google Scholar
- Sotiria Palioura
You can also search for this author inPubMed Google Scholar
- Dieter Söll
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDieter Söll.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Ambrogelly, A., Palioura, S. & Söll, D. Natural expansion of the genetic code.Nat Chem Biol3, 29–35 (2007). https://doi.org/10.1038/nchembio847
Published:
Issue Date: