- Article
- Published:
Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase
- Pierre-Pol Liebgott1,
- Fanny Leroux1,2,
- Bénédicte Burlat1,2,
- Sébastien Dementin1,
- Carole Baffert1,2,
- Thomas Lautier3,4,6,
- Vincent Fourmond1,
- Pierre Ceccaldi1,2,
- Christine Cavazza7,
- Isabelle Meynial-Salles3,4,6,
- Philippe Soucaille3,4,5,6,
- Juan Carlos Fontecilla-Camps7,
- Bruno Guigliarelli1,2,
- Patrick Bertrand1,2,
- Marc Rousset1 &
- …
- Christophe Léger1
Nature Chemical Biologyvolume 6, pages63–70 (2010)Cite this article
2045Accesses
199Citations
5Altmetric
Abstract
In hydrogenases and many other redox enzymes, the buried active site is connected to the solvent by a molecular channel whose structure may determine the enzyme's selectivity with respect to substrate and inhibitors. The role of these channels has been addressed using crystallography and molecular dynamics, but kinetic data are scarce. Using protein film voltammetry, we determined and then compared the rates of inhibition by CO and O2 in ten NiFe hydrogenase mutants and two FeFe hydrogenases. We found that the rate of inhibition by CO is a good proxy of the rate of diffusion of O2 toward the active site. Modifying amino acids whose side chains point inside the tunnel can slow this rate by orders of magnitude. We quantitatively define the relations between diffusion, the Michaelis constant for H2 and rates of inhibition, and we demonstrate that certain enzymes are slowly inactivated by O2 because access to the active site is slow.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Maynard, E.L. & Lindahl, P.A. Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-coa synthase fromClostridium thermoaceticum.J. Am. Chem. Soc.121, 9221–9222 (1999).
Fontecilla-Camps, J.C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases.Chem. Rev.107, 4273–4303 (2007).
Cohen, J., Kim, K., King, P., Seibert, M. & Schulten, K. Finding gas diffusion pathways in proteins: application to O2 and H2 transport inCpI [FeFe]-hydrogenase and the role of packing defects.Structure13, 1321–1329 (2005).
Nienhaus, K., Deng, P., Olson, J.S., Warren, J.J. & Nienhaus, G.U. Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants.J. Biol. Chem.278, 42532–42544 (2003).
Ruscio, J.Z. et al. Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin.Proc. Natl. Acad. Sci. USA105, 9204–9209 (2008).
Cohen, J. & Schulten, K. O2-migration pathways are not conserved across proteins of a similar fold.Biophys. J.93, 3591–3600 (2007).
Salomonsson, L., Lee, A., Gennis, R.B. & Brzezinski, P. A single-amino-acid lid renders a gas-tight compartment within a membrane-bound transporter.Proc. Natl. Acad. Sci. USA101, 11617–11621 (2004).
Leroux, F. et al. Experimental approaches to kinetics of gas diffusion in hydrogenase.Proc. Natl. Acad. Sci. USA105, 11188–11193 (2008).
Vincent, K.A. et al. Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels.Proc. Natl. Acad. Sci. USA102, 16951–16954 (2005).
Vincent, K.A. et al. Enzymatic catalysis on conducting graphite particles.Nat. Chem. Biol.3, 761–762 (2007).
Karyakin, A.A. et al. The limiting performance characteristics in bioelectrocatalysis of hydrogenase enzymes.Angew. Chem. Int. Ed.46, 7244–7246 (2007).
Hambourger, M. et al. [FeFe]-hydrogenase-catalyzed H2 production in a photo-electrochemical biofuel cell.J. Am. Chem. Soc.130, 2015–2022 (2008).
Ghirardi, M.L., Dubini, A., Yu, J. & Maness, P.-C. Photobiological hydrogen-producing systems.Chem. Soc. Rev.38, 52–61 (2009).
Volbeda, A., Montet, Y., Vernède, X., Hatchikian, E.C. & Fontecilla-Camps, J.C. High-resolution crystallographic analysis ofDesulfovibrio fructosovorans NiFe hydrogenase.Int. J. Hydrogen Energy27, 1449–1461 (2002).
Buhrke, T., Lenz, O., Krauss, N. & Friedrich, B. Oxygen tolerance of the H2-sensing [NiFe] hydrogenase fromRalstonia eutropha H16 is based on limited access of oxygen to the active site.J. Biol. Chem.280, 23791–23796 (2005).
Duché, O., Elsen, S., Cournac, L. & Colbeau, A. Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV ofRhodobacter capsulatus O2 sensitive without affecting its transductory activity.FEBS J.272, 3899–3908 (2005).
Ludwig, M., Cracknell, J.A., Vincent, K.A., Armstrong, F.A. & Lenz, O. Oxygen-tolerant H2 oxidation by membrane-bound [NiFe]-hydrogenases ofRalstonia species: coping with low-level H2 in air.J. Biol. Chem.284, 465–477 (2009).
Dementin, S. et al. Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant.J. Am. Chem. Soc.131, 10156–10164 (2009).
Baffert, C. et al. Hydrogen-activating enzymes: activity does not correlate with oxygen-sensitivity.Angew. Chem. Int. Ed.47, 2052–2055 (2008).
Vincent, K.A., Parkin, A. & Armstrong, F.A. Investigating and exploiting the electrocatalytic properties of hydrogenases.Chem. Rev.107, 4366–4413 (2007).
Léger, C., Dementin, S., Bertrand, P., Rousset, M. & Guigliarelli, B. Inhibition and aerobic inactivation kinetics ofDesulfovibrio fructosovorans NiFe hydrogenases studied by protein film voltammetry.J. Am. Chem. Soc.126, 12162–12172 (2004).
Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies.Chem. Rev.108, 2379–2438 (2008).
Guigliarelli, B. et al. Structural organization of the Ni and [4Fe-4S] centers in the active form ofDesulfovibrio gigas hydrogenase. Analysis of the magnetic interactions by electron paramagnetic resonance spectroscopy.Biochemistry34, 4781–4790 (1995).
Almeida, M.G. et al. A needle in a haystack: the active site of the membrane-bound complex cytochromec nitrite reductase.FEBS Lett.581, 284–288 (2007).
Rohlfs, R.J., Olson, J.S. & Gibson, Q.H. A comparison of the geminate recombination kinetics of several monomeric heme proteins.J. Biol. Chem.263, 1803–1813 (1988).
Riistama, S., Puustinen, A., Verkhovsky, M.I., Morgan, J.E. & Wikstrom, M. Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochromec oxidase fromParacoccus denitrificans.Biochemistry39, 6365–6372 (2000).
Chen, L., Lyubimov, A.Y., Brammer, L., Vrielink, A. & Sampson, N.S. The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase.Biochemistry47, 5368–5377 (2008).
Barney, B.M., Yurth, M.G., Dos Santos, P.C., Dean, D.R. & Seefeldt, L.C. A substrate channel in the nitrogenase MoFe protein.J. Biol. Inorg. Chem.14, 1015–1022 (2009).
Dementin, S. et al. A glutamate is the essential proton transfer gate during the catalytic cycle of the NiFe hydrogenase.J. Biol. Chem.279, 10508–10513 (2004).
Dementin, S. et al. Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers.J. Am. Chem. Soc.128, 5209–5218 (2006).
Rousset, M. New shuttle vectors for the introduction of cloned DNA inDesulfovibrio.Plasmid39, 114–122 (1998).
Hatchikian, E.C., Forget, N., Fernandez, V.M., Williams, R. & Cammack, R. Further characterization of the [Fe]-hydrogenase fromDesulfovibrio desulfuricans ATCC 7757.Eur. J. Biochem.209, 357–365 (1992).
Fourmond, V. et al. Correcting for electrocatalyst desorption and inactivation in chronoamperometry experiments.Anal. Chem.81, 2962–2968 (2009).
Rousset, M. et al. [3Fe-4S] to [4Fe-4S] cluster conversion inDesulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis.Proc. Natl. Acad. Sci. USA95, 11625–11630 (1998).
Fourmond, V. et al. SOAS: a free software to analyse electrochemical data and other one-dimensional signals.Bioelectrochem.76, 141–147 (2009).
Demuez, M. et al. Complete activity profile ofClostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners.FEMS Microbiol. Lett.275, 113–121 (2007).
Acknowledgements
This work was funded by the Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Agence Nationale de la Recherche, the University of Provence and the City of Marseilles, and supported by the Pôle de Compétitivité Capénergies. The Groupe de Recherche 2977 (“Bio-hydrogène”) paid the publication fees for this article.
Author information
Authors and Affiliations
Centre National de la Recherche Scientifique, Unité Propre de Recherche 9036, Unité de Bioénergétique et Ingénierie des Protéines, Institut Fédératif de Recherche 88, Institut de Microbiologie de la Méditerranée, Marseille, France
Pierre-Pol Liebgott, Fanny Leroux, Bénédicte Burlat, Sébastien Dementin, Carole Baffert, Vincent Fourmond, Pierre Ceccaldi, Bruno Guigliarelli, Patrick Bertrand, Marc Rousset & Christophe Léger
Aix Marseille Université, Marseille, France
Fanny Leroux, Bénédicte Burlat, Carole Baffert, Pierre Ceccaldi, Bruno Guigliarelli & Patrick Bertrand
Université de Toulouse; Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés,
Thomas Lautier, Isabelle Meynial-Salles & Philippe Soucaille
Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
Thomas Lautier, Isabelle Meynial-Salles & Philippe Soucaille
Institut National de la Recherche Agronomique, Unité Mixte de Recherche 792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
Philippe Soucaille
Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5504, Toulouse, France
Thomas Lautier, Isabelle Meynial-Salles & Philippe Soucaille
Laboratoire de Cristallographie et de Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France
Christine Cavazza & Juan Carlos Fontecilla-Camps
- Pierre-Pol Liebgott
Search author on:PubMed Google Scholar
- Fanny Leroux
Search author on:PubMed Google Scholar
- Bénédicte Burlat
Search author on:PubMed Google Scholar
- Sébastien Dementin
Search author on:PubMed Google Scholar
- Carole Baffert
Search author on:PubMed Google Scholar
- Thomas Lautier
Search author on:PubMed Google Scholar
- Vincent Fourmond
Search author on:PubMed Google Scholar
- Pierre Ceccaldi
Search author on:PubMed Google Scholar
- Christine Cavazza
Search author on:PubMed Google Scholar
- Isabelle Meynial-Salles
Search author on:PubMed Google Scholar
- Philippe Soucaille
Search author on:PubMed Google Scholar
- Juan Carlos Fontecilla-Camps
Search author on:PubMed Google Scholar
- Bruno Guigliarelli
Search author on:PubMed Google Scholar
- Patrick Bertrand
Search author on:PubMed Google Scholar
- Marc Rousset
Search author on:PubMed Google Scholar
- Christophe Léger
Search author on:PubMed Google Scholar
Contributions
P.-P.L. designed mutants of the NiFe enzyme, performed mutagenesis, carried out protein purification, solution assays and electrochemical measurements, and analyzed data, with the support of M.R. and C.L. F.L. performed electrochemical measurements on several forms of the NiFe hydrogenase (WT, L122M V74M, V74M, L122F V74I). B.B. characterized by EPR the NiFe hydrogenase mutants, with the support of B.G. S.D. designed mutants of the NiFe enzyme, performed mutagenesis, carried out protein purification and solution assays, and interpreted studies, with the support of M.R. C.B. performed the electrochemical characterization of the two FeFe hydrogenases and analyzed the data. T.L. purified the FeFe hydrogenase fromC. acetobutylicum and assayed its activity, with the support and advice of I.M.-S. and P.S. V.F. contributed to modeling. P.C. characterized the V74W mutant, and analyzed the data. C.C. purified the FeFe hydrogenase fromD. desulfuricans, with the support of J.C.F.-C. P.-P.L., S.D., B.B., C.B., M.R., B.G., P.B. and C.L. co-designed research. S.D., P.B. and C.L. conceptualized, analyzed and interpreted all studies and co-wrote the manuscript.
Corresponding author
Correspondence toChristophe Léger.
Supplementary information
Supplementary Text and Figures
Supplementary Methods and Supplementary Results (PDF 183 kb)
Rights and permissions
About this article
Cite this article
Liebgott, PP., Leroux, F., Burlat, B.et al. Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase.Nat Chem Biol6, 63–70 (2010). https://doi.org/10.1038/nchembio.276
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Protein film electrochemistry
- Julea N. Butt
- Lars J. C. Jeuken
- Alexander L. Sutton-Cook
Nature Reviews Methods Primers (2023)
O2-tolerant CO dehydrogenase via tunnel redesign for the removal of CO from industrial flue gas
- Suk Min Kim
- Jinhee Lee
- Yong Hwan Kim
Nature Catalysis (2022)
Microbial oxidation of atmospheric trace gases
- Chris Greening
- Rhys Grinter
Nature Reviews Microbiology (2022)
A safety cap protects hydrogenase from oxygen attack
- Martin Winkler
- Jifu Duan
- Thomas Happe
Nature Communications (2021)
Isolation of an archaeon at the prokaryote–eukaryote interface
- Hiroyuki Imachi
- Masaru K. Nobu
- Ken Takai
Nature (2020)


