Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Chemical Biology
  • Article
  • Published:

Lactate metabolism is associated with mammalian mitochondria

Nature Chemical Biologyvolume 12pages937–943 (2016)Cite this article

Subjects

Abstract

It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. It is generally assumed, however, that within the fermenting cell itself, lactate is produced to replenish NAD+ and then is secreted. Here we explore the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. Using high-resolution mass spectrometry, we found that both13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not of isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 125-MHz cross-polarization magic-angle spinning13C NMR spectra.
Figure 2: HeLa and H460 cells cultured in [13C3]lactate have labeled tricarboxylic acid (TCA) cycle intermediates.
Figure 3: Deuterium labels from [2H]lactate enter the mitochondria.
Figure 4: Lactate dehydrogenase B (LDHB) is present in HeLa mitochondria.
Figure 5: HeLa mitochondria use lactate as a carbon source to respire.

Similar content being viewed by others

References

  1. Lehninger, A., Nelson, D. & Cox, M.E.Lehninger Principles of Biochemistry (W.H. Freeman and Company, 2008).

  2. Cori, C.F. & Cori, G.T. Carbohydrate metabolism.Annu. Rev. Biochem.15, 193–218 (1946).

    Article CAS  Google Scholar 

  3. Nielsen, H.B., Clemmesen, J.O., Skak, C., Ott, P. & Secher, N.H. Attenuated hepatosplanchnic uptake of lactate during intense exercise in humans.J. Appl. Physiol.92, 1677–1683 (2002).

    Article CAS  Google Scholar 

  4. Bonvento, G., Herard, A.-S. & Voutsinos-Porche, B. The astrocyte–neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging.J. Cereb. Blood Flow Metab.25, 1394–1399 (2005).

    Article CAS  Google Scholar 

  5. Pavlides, S. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.Cell Cycle8, 3984–4001 (2009).

    Article CAS  Google Scholar 

  6. Kane, D.A. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work.Front. Neurosci.8, 366 (2014).

    Article  Google Scholar 

  7. Hashimoto, T., Hussien, R. & Brooks, G.A. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex.Am. J. Physiol. Endocrinol. Metab.290, E1237–E1244 (2006).

    Article CAS  Google Scholar 

  8. Brooks, G.A., Dubouchaud, H., Brown, M., Sicurello, J.P. & Butz, C.E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.Proc. Natl. Acad. Sci. USA96, 1129–1134 (1999).

    Article CAS  Google Scholar 

  9. Chen, Y.-J. et al. Differential incorporation of glucose into biomass during Warburg metabolism.Biochemistry53, 4755–4757 (2014).

    Article CAS  Google Scholar 

  10. Brandt, R.B., Laux, J.E., Spainhour, S.E. & Kline, E.S. Lactate dehydrogenase in rat mitochondria.Arch. Biochem. Biophys.259, 412–422 (1987).

    Article CAS  Google Scholar 

  11. Markert, C.L., Shaklee, J.B. & Whitt, G.S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation.Science.189, 102–114 (1975).

    Article CAS  Google Scholar 

  12. Takasu, T. & Hughes, B.P. Lactate dehydrogenase isozyme patterns in human skeletal muscle. I. Variation of isozyme pattern in the adult.J. Neurol. Neurosurg. Psychiatry32, 175–179 (1969).

    Article CAS  Google Scholar 

  13. Sjödin, B. Lactate dehydrogenase in human skeletal muscle.Acta Physiol. Scand. Suppl.436, 1–32 (1976).

    PubMed  Google Scholar 

  14. Shaw, C.R. & Barto, E. Genetic evidence for the subunit structure of lactate dehydrogenase isozymes.Proc. Natl. Acad. Sci. USA50, 211–214 (1963).

    Article CAS  Google Scholar 

  15. Dawson, D.M., Goodfriend, T.L. & Kaplan, N.O. Lactic dehydrogenases: functions of the two types.Science143, 929–933 (1964).

    Article CAS  Google Scholar 

  16. Doherty, J.R. & Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics.J. Clin. Invest.123, 3685–3692 (2013).

    Article CAS  Google Scholar 

  17. Elustondo, P.A. et al. Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria.J. Biol. Chem.288, 25309–25317 (2013).

    Article CAS  Google Scholar 

  18. Brooks, G.A. Intra- and extra-cellular lactate shuttles.Med. Sci. Sports Exerc.32, 790–799 (2000).

    Article CAS  Google Scholar 

  19. van Hall, G. et al. Blood lactate is an important energy source for the human brain.J. Cereb. Blood Flow Metab.29, 1121–1129 (2009).

    Article CAS  Google Scholar 

  20. Gladden, L.B. Lactate metabolism: a new paradigm for the third millennium.J. Physiol. (Lond.)558, 5–30 (2004).

    Article CAS  Google Scholar 

  21. Kennedy, B.W.C., Kettunen, M.I., Hu, D.-E. & Brindle, K.M. Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized l-[1-(13)C,U-(2)H]lactate.J. Am. Chem. Soc.134, 4969–4977 (2012).

    Article CAS  Google Scholar 

  22. Greenhouse, W.V. & Lehninger, A.L. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.Cancer Res.37, 4173–4181 (1977).

    CAS PubMed  Google Scholar 

  23. Chiaretti, B., Casciaro, A., Minotti, G., Eboli, M.L. & Galeotti, T. Quantitative evaluation of the activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells.Cancer Res.39, 2195–2199 (1979).

    CAS PubMed  Google Scholar 

  24. Bücher, T. & Klingenberg, M. Wege des Wasserstoffs in der lebendigen Organisation.Angew. Chem.70, 552–570 (1958).

    Article  Google Scholar 

  25. O'Donnell, J.M., Kudej, R.K., LaNoue, K.F., Vatner, S.F. & Lewandowski, E.D. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload.Am. J. Physiol. Heart Circ. Physiol.286, H2237–H2242 (2004).

    Article CAS  Google Scholar 

  26. Hashimoto, T., Hussien, R., Cho, H.-S., Kaufer, D. & Brooks, G.A. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles.PLoS ONE3, e2915 (2008).

    Article  Google Scholar 

  27. Ivanisevic, J. et al. Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism.Anal. Chem.85, 6876–6884 (2013).

    Article CAS  Google Scholar 

  28. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts.Nat. Protoc.2, 287–295 (2007).

    Article CAS  Google Scholar 

  29. Schugar, R.C., Huang, X., Moll, A.R., Brunt, E.M. & Crawford, P.A. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.PLoS ONE8, e74806 (2013).

    Article CAS  Google Scholar 

  30. Lanza, I.R. & Nair, K.S. Functional assessment of isolated mitochondria in vitro.Methods Enzymol.457, 349–372 (2009).

    Article CAS  Google Scholar 

  31. Kuznetsov, A.V. et al. Analysis of mitochondrial functionin situ in permeabilized muscle fibers, tissues and cells.Nat. Protoc.3, 965–976 (2008).

    Article CAS  Google Scholar 

  32. Rogers, G.W. et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria.PLoS ONE6, e21746 (2011).

    Article CAS  Google Scholar 

  33. Stueber, D., Mehta, A.K., Chen, Z., Wooley, K.L. & Schaefer, J. Local order in polycarbonate glasses by13C{19F} rotational-echo double-resonance NMR.J. Polym. Sci. B Polym. Phys.44, 2760–2775 (2006).

    Article CAS  Google Scholar 

  34. Chambers, M.C. et al. A cross-platform toolkit for mass spectrometry and proteomics.Nat. Biotechnol.30, 918–920 (2012).

    Article CAS  Google Scholar 

  35. Mahieu, N.G., Spalding, J.L. & Patti, G.J. Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis.Bioinformatics32, 268–275 (2016).

    CAS PubMed  Google Scholar 

  36. Huang, X. et al. X13CMS: global tracking of isotopic labels in untargeted metabolomics.Anal. Chem.86, 1632–1639 (2014).

    Article CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health grants R01 ES022181 (G.J.P.), R21 CA191097-01A1 (G.J.P.), R01 HL118639-03 (R.W.G.), R01 DK091538 (P.A.C.), and R01 EB002058 (J.S.), as well as grants from the Alfred P. Sloan Foundation (G.J.P.), the Camille & Henry Dreyfus Foundation (G.J.P.), and the Pew Scholars Program in the Biomedical Sciences (G.J.P.). We thank W. Beatty at Washington University's Molecular Microbiology Imaging Facility for acquiring the TEM images.

Author information

Authors and Affiliations

  1. Department of Chemistry, Washington University, St. Louis, Missouri, USA

    Ying-Jr Chen, Nathaniel G Mahieu, Manmilan Singh, Jacob Schaefer & Gary J Patti

  2. Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA

    Xiaojing Huang & Stephen L Johnson

  3. Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA

    Xiaojing Huang & Peter A Crawford

  4. Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA

    Richard W Gross & Gary J Patti

Authors
  1. Ying-Jr Chen

    You can also search for this author inPubMed Google Scholar

  2. Nathaniel G Mahieu

    You can also search for this author inPubMed Google Scholar

  3. Xiaojing Huang

    You can also search for this author inPubMed Google Scholar

  4. Manmilan Singh

    You can also search for this author inPubMed Google Scholar

  5. Peter A Crawford

    You can also search for this author inPubMed Google Scholar

  6. Stephen L Johnson

    You can also search for this author inPubMed Google Scholar

  7. Richard W Gross

    You can also search for this author inPubMed Google Scholar

  8. Jacob Schaefer

    You can also search for this author inPubMed Google Scholar

  9. Gary J Patti

    You can also search for this author inPubMed Google Scholar

Contributions

Y.-J.C. prepared samples, carried out biochemical assays, and performed LC/MS analyses. Y.-J.C., M.S., and J.S. performed NMR analyses. Y.-J.C., N.G.M., X.H., M.S., P.A.C., S.L.J., R.W.G., J.S., and G.J.P. contributed to experimental design and data interpretation. Y.-J.C., N.G.M., and G.J.P. wrote the manuscript.

Corresponding author

Correspondence toGary J Patti.

Ethics declarations

Competing interests

G.J.P. is a scientific advisory board member for Cambridge Isotope Laboratories, Tewksbury, Massachusetts, USA. R.W.G. has financial relationships with LipoSpectrum and Platomics. P.A.C. serves as a consultant and on a scientific advisory board for Janssen Pharmaceuticals, Titusville, New Jersey, USA.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Tables 1–3. (PDF 13674 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YJ., Mahieu, N., Huang, X.et al. Lactate metabolism is associated with mammalian mitochondria.Nat Chem Biol12, 937–943 (2016). https://doi.org/10.1038/nchembio.2172

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp