- Article
- Published:
Reactions of xenon with iron and nickel are predicted in the Earth's inner core
- Li Zhu1,
- Hanyu Liu ORCID:orcid.org/0000-0003-2394-54211,
- Chris J. Pickard2,
- Guangtian Zou1 &
- …
- Yanming Ma1
Nature Chemistryvolume 6, pages644–648 (2014)Cite this article
7156Accesses
46Altmetric
Subjects
Abstract
Studies of the Earth's atmosphere have shown that more than 90% of the expected amount of Xe is depleted, a finding often referred to as the ‘missing Xe paradox’. Although several models for a Xe reservoir have been proposed, whether the missing Xe could be contained in the Earth's inner core has not yet been answered. The key to addressing this issue lies in the reactivity of Xe with Fe/Ni, the main constituents of the Earth's core. Here, we predict, through first-principles calculations and unbiased structure searching techniques, a chemical reaction of Xe with Fe/Ni at the temperatures and pressures found in the Earth's core. We find that, under these conditions, Xe and Fe/Ni can form intermetallic compounds, of which XeFe3 and XeNi3 are energetically the most stable. This shows that the Earth's inner core is a natural reservoir for Xe storage and provides a solution to the missing Xe paradox.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others

Xenon iron oxides predicted as potential Xe hosts in Earth’s lower mantle

Synthesis of rare-earth metal compounds through enhanced reactivity of alkali halides at high pressures
References
Grochala, W. Atypical compounds of gases, which have been called ‘noble’.Chem. Soc. Rev.36, 1632–1655 (2007).
Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles.Science198, 453–465 (1977).
Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets.Rev. Min. Geochem.47, 191–246 (2002).
Sill, G. T. & Wilkening, L. L. Ice clathrate as a possible source of the atmospheres of the terrestrial planets.Icarus33, 13–22 (1978).
Wacker, J. F. & Anders, E. Trapping of xenon in ice: implications for the origin of the Earth's noble gases.Geochim. Cosmochim. Acta48, 2373–2380 (1984).
Matsuda, J-I. & Matsubara, K. Noble gases in silica and their implication for the terrestrial ‘missing’ Xe.Geophys. Res. Lett.16, 81–84 (1989).
Caldwell, W. A. et al. Structure, bonding, and geochemistry of xenon at high pressures.Science277, 930–933 (1997).
Jephcoat, A. P. Rare-gas solids in the Earth's deep interior.Nature393, 355–358 (1998).
Sanloup, C. et al. Retention of xenon in quartz and Earth's missing xenon.Science310, 1174–1177 (2005).
Lee, K. K. M. & Steinle-Neumann, G. High-pressure alloying of iron and xenon: ‘missing’ Xe in the Earth's core?J. Geophys. Res.111, B02202 (2006).
Nishio-Hamane, D., Yagi, T., Sata, N., Fujita, T. & Okada, T. No reactions observed in Xe–Fe system even at Earth core pressures.Geophys. Res. Lett.37, L04302 (2010).
Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature.Nature490, 531–534 (2012).
Miao, M-S. Xe anions in stable Mg–Xe compounds: the mechanism of missing Xe in Earth atmosphere. Preprint athttp://arxiv.org/abs/1309.0696 (2013).
Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles.Icarus92, 2–79 (1991).
Sanloup, C., Bonev, S. A., Hochlaf, M. & Maynard-Casely, H. E. Reactivity of xenon with ice at planetary conditions.Phys. Rev. Lett.110, 265501 (2013).
Brock, D. S. & Schrobilgen, G. J. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon.J. Am. Chem. Soc.133, 6265–6269 (2011).
Zhu, Q. et al. Stability of xenon oxides at high pressures.Nature Chem.5, 61–65 (2013).
Probert, M. I. J. Anab initio study of xenon retention in α-quartz.J. Phys.22, 025501 (2010).
Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization.Phys. Rev. B82, 094116 (2010).
Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction.Comput. Phys. Commun.183, 2063–2070 (2012).
Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.Science340, 464–466 (2013).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential.J. Chem. Phys.118, 8207 (2003).
Paier, J. et al. Screened hybrid density functionals applied to solids.J. Chem. Phys.124, 154709 (2006).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.Phys. Rev. Lett.77, 3865–3868 (1996).
Brostigen, G. et al. Compounds with the marcasite type crystal structure. V. The crystal structures of FeS2, FeTe2, and CoTe2 .Acta Chem. Scand.24, 1925–1940 (1970).
Petitgrand, D. & Meyer, P. Far infrared antiferromagnetic resonance in FeCl2, FeBr2 and FeI2 .J. Phys. France37, 1417–1422 (1976).
Kim, M., Debessai, M. & Yoo, C-S. Two- and three-dimensional extended solids and metallization of compressed XeF2 .Nature Chem.2, 784–788 (2010).
Miao, M-S. Caesium in high oxidation states and as a p-block element.Nature Chem.5, 846–852 (2013).
Katsura, T. High-pressure synthesis of the stoichiometric compound FeO.J. Chem. Phys.47, 4559 (1967).
Connerade, J. P., Dolmatov, V. K. & Lakshmi, P. A. The filling of shells in compressed atoms.J. Phys. B33, 251–264 (2000).
Chin, H. B. & Bau, R. The crystal structure of disodium tetracarbonylferrate. Distortion of the tetracarbonylferrate(2−) anion in the solid state.J. Am. Chem. Soc.98, 2434–2439 (1976).
Belonoshko, A., Skorodumova, N., Rosengren, A. & Johansson, B. Melting and critical superheating.Phys. Rev. B73, 012201 (2006).
McDonough, W. F. inTreatise on Geochemistry Vol.2, 547–568 (Pergamon, 2003).
Oganov, A. R. inTreatise on Geophysics Vol.2, 121–152 (Elsevier, 2007).
Liu, Z-L., Yang, J-H., Cai, L-C., Jing, F-Q. & Alfè, D. Structural and thermodynamic properties of compressed palladium:ab initio and molecular dynamics study.Phys. Rev. B83, 144113 (2011).
Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: the Parrinello–Rahman method revisited.Phys. Rev. Lett.90, 075503 (2003).
Pickard, C. J. & Needs, R. High-pressure phases of silane.Phys. Rev. Lett.97, 045504 (2006).
Pickard, C. J. & Needs, R. J.Ab initio random structure searching.J. Phys.23, 053201 (2011).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias.J. Phys.21, 084204 (2009).
Clark, S. J. et al. First principles methods using CASTEP.Z. Kristallogr.220, 567–570 (2005).
Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures.Phys. Rev. B78, 134106 (2008).
Blaha, P., Schwarz, K., Sorantin, P. & Trickey, S. B. Full-potential, linearized augmented plane wave programs for crystalline systems.Comput. Phys. Commun.59, 399–415 (1990).
Luo, F., Chen, X-R., Cai, L-C. & Ji, G-F. Solid–liquid interfacial energy and melting properties of nickel under pressure from molecular dynamics.J. Chem. Eng. Data55, 5149–5155 (2010).
Acknowledgements
The authors acknowledge support from the China 973 Program (2011CB808200), the Natural Science Foundation of China (grant nos 11274136, 11025418 and 91022029), the fund of CAEP-SCNS (R2014-0302), the 2012 Changjiang Scholars Program of China and the Changjiang Scholar and Innovative Research Team in University (IRT1132). Some calculations were performed in the High Performance Computing Center of Jilin University. C.J.P. was funded by the UK Engineering and Physical Science Research Council (EPSRC).
Author information
Authors and Affiliations
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
Li Zhu, Hanyu Liu, Guangtian Zou & Yanming Ma
Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
Chris J. Pickard
- Li Zhu
You can also search for this author inPubMed Google Scholar
- Hanyu Liu
You can also search for this author inPubMed Google Scholar
- Chris J. Pickard
You can also search for this author inPubMed Google Scholar
- Guangtian Zou
You can also search for this author inPubMed Google Scholar
- Yanming Ma
You can also search for this author inPubMed Google Scholar
Contributions
Y.M. proposed and coordinated the research. L.Z. and H.L. performed most of the calculations. L.Z., H.L., C.J.P., G.Z. and Y.M. analysed the data. C.J.P. carried out the Ab Initio Random Structure Searching structure predictions. All authors commented on the manuscript. L.Z. and Y.M. wrote the paper.
Corresponding author
Correspondence toYanming Ma.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 7180 kb)
Rights and permissions
About this article
Cite this article
Zhu, L., Liu, H., Pickard, C.et al. Reactions of xenon with iron and nickel are predicted in the Earth's inner core.Nature Chem6, 644–648 (2014). https://doi.org/10.1038/nchem.1925
Received:
Accepted:
Published:
Issue Date: