- Article
- Published:
The human CENP-A centromeric nucleosome-associated complex
- Daniel R. Foltz1,3,
- Lars E. T. Jansen1,3,
- Ben E. Black1,3,
- Aaron O. Bailey4,
- John R. Yates III4 &
- …
- Don W. Cleveland1,2,3
Nature Cell Biologyvolume 8, pages458–469 (2006)Cite this article
8110Accesses
7Altmetric
Abstract
The basic element for chromosome inheritance, the centromere, is epigenetically determined in mammals. The prime candidate for specifying centromere identity is the array of nucleosomes assembled with CENP-A, the centromere-specific histone H3 variant. Here, we show that CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of three new human centromere proteins (CENP-M, CENP-N and CENP-T), along with CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Facilitates chromatin transcription (FACT) and nucleophosmin-1 (previously implicated in transcriptional chromatin remodelling and as a multifunctional nuclear chaperone, respectively) are absent from histone H3-containing nucleosomes, but are stably recruited to CENP-A nucleosomes independent of CENP-A NAC. Seven new CENP-A-nucleosome distal (CAD) centromere components (CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S) are identified as assembling on the CENP-A NAC. The CENP-A NAC is essential, as disruption of the complex causes errors of chromosome alignment and segregation that preclude cell survival despite continued centromere-derived mitotic checkpoint signalling.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling.Cell112, 407–421 (2003).
Amor, D. J., Kalitsis, P., Sumer, H. & Choo, K. H. Building the centromere: from foundation proteins to 3D organization.Trends Cell Biol.14, 359–368 (2004).
Amor, D. J. & Choo, K. H. Neocentromeres: role in human disease, evolution, and centromere study.Am. J. Hum. Genet.71, 695–714 (2002).
Henikoff, S. & Ahmad, K. Assembly of variant histones into chromatin.Annu. Rev. Cell Dev. Biol.21, 133–153 (2005).
Sullivan, B. A., Blower, M. D. & Karpen, G. H. Determining centromere identity: cyclical stories and forking paths.Nature Rev. Genet.2, 584–596 (2001).
Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans.Dev. Cell2, 319–330 (2002).
Black, B. E. et al. Structural determinants for generating centromeric chromatin.Nature430, 578–82 (2004).
Cheeseman, I. M., Drubin, D. G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast.J. Cell Biol.157, 199–203 (2002).
McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function and regulation of budding yeast kinetochores.Annu. Rev. Cell Dev. Biol.19, 519–539 (2003).
Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice.Proc. Natl Acad. Sci. USA97, 1148–1153 (2000).
Fukagawa, T., Pendon, C., Morris, J. & Brown, W. CENP-C is necessary but not sufficient to induce formation of a functional centromere.EMBO J.18, 4196–4209 (1999).
Meluh, P. B. & Koshland, D. Evidence that theMIF2 gene ofSaccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C.Mol. Biol. Cell6, 793–807 (1995).
Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway.J. Cell Biol.160, 25–39 (2003).
Goshima, G., Saitoh, S. & Yanagida, M. Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation.Genes Dev.13, 1664–1677 (1999).
Liu, S. T. et al. Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis.Nature Cell Biol.5, 341–345 (2003).
Nishihashi, A. et al. CENP-I is essential for centromere function in vertebrate cells.Dev. Cell2, 463–476 (2002).
Fukagawa, T. et al. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells.EMBO J.20, 4603–4617 (2001).
Bomont, P., Maddox, P., Shah, J. V., Desai, A. B. & Cleveland, D. W. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F.EMBO J.24, 3927–3939 (2005).
Mao, Y., Desai, A. & Cleveland, D. W. Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling.J. Cell Biol.170, 873–880 (2005).
Obuse, C. et al. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase.Genes Cells9, 105–120 (2004).
Cheeseman, I. M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function.J. Cell Biol.155, 1137–1145 (2001).
Smith, S. & Stillman, B. Stepwise assembly of chromatin during DNA replicationin vitro.EMBO J.10, 971–980 (1991).
Jackson, V.In vivo studies on the dynamics of histone–DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both.Biochemistry29, 719–731 (1990).
Shelby, R. D., Vafa, O. & Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites.J. Cell Biol.136, 501–513 (1997).
Eickbush, T. H. & Moudrianakis, E. N. The histone core complex: an octamer assembled by two sets of protein-protein interactions.Biochemistry17, 4955–4964 (1978).
Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite.J. Cell Biol.109, 1963–1973 (1989).
Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4.Cell87, 95–104 (1996).
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis.Cell116, 51–61 (2004).
Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance.Nature Rev. Mol. Cell Biol.5, 296–304 (2004).
Sarma, K. & Reinberg, D. Histone variants meet their match.Nature Rev. Mol. Cell Biol.6, 139–149 (2005).
Hanissian, S. H. et al. cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP.Oncogene23, 3700–3707 (2004).
Minoshima, Y. et al. The constitutive centromere component CENP-50 is required for recovery from spindle damage.Mol. Cell Biol.25, 10315–10328 (2005).
Bierie, B., Edwin, M., Joseph Melenhorst, J. & Hennighausen, L. The proliferation associated nuclear element (PANE1) is conserved between mammals and fish and preferentially expressed in activated lymphoid cells.Gene Expr. Patterns4, 389–395 (2004).
Cheeseman, I. M. & Desai, A. A combined approach for the localization and tandem affinity purification of protein complexes from metazoans.Sci. STKE DOI:10.1126/stke.2662005pl1 (2005).
Earnshaw, W. C. et al. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen.J. Cell Biol.104, 817–829 (1987).
Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate.Cell70, 115–125 (1992).
Sugata, N., Munekata, E. & Todokoro, K. Characterization of a novel kinetochore protein, CENP-H.J. Biol. Chem.274, 27343–27346 (1999).
Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins.Nature400, 284–288 (1999).
Okuwaki, M., Matsumoto, K., Tsujimoto, M. & Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone.FEBS Lett.506, 272–276 (2001).
Okuda, M. The role of nucleophosmin in centrosome duplication.Oncogene21, 6170–6174 (2002).
Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells.Science296, 550–553 (2002).
Regnier, V. et al. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1.Mol. Cell Biol.25, 3967–3981 (2005).
Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores.J. Cell Biol.143, 283–295 (1998).
Shah, J. V. et al. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing.Curr. Biol.14, 942–952 (2004).
Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere–kinetochore complex: a repeat subunit model.J. Cell Biol.113, 1091–1110 (1991).
Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres.Cell118, 715–729 (2004).
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration.Science301, 1090–1093 (2003).
Yoda, K., Morishita, S. & Hashimoto, K. Histone variant CENP-A purification, nucleosome reconstitution.Methods Enzymol.375, 253–269 (2004).
MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue.Proc. Natl Acad. Sci. USA99, 7900–7905 (2002).
Acknowledgements
The authors thank T. Fukagawa, I. Cheeseman, J. Shah, P. Maddox, K. Weis, F. Furnari and K. Yoda for generously providing reagents and assistance; D. Young and the University of California at San Diego (UCSD) Cancer Center for flow cytometry and the Oegema and Desai laboratorys for use of spinning disk confocal and deconvolution microscopes. This work has been supported by grants from the National Institutes of Health (NIH) to D.W.C. (GM 29513) and J.R.Y. (RR11823). D.R.F. has been supported by a postdoctoral fellowship from the NIH and B.E.B. has been supported by a postdoctoral fellowship from the American Cancer Society and in part by a Career Award in the Biomedical Sciences from the Burroughs Welcome Fund. D.W.C. receives salary support from the Ludwig Institute for Cancer Research.
Author information
Authors and Affiliations
Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, 92093–0670, CA, USA
Daniel R. Foltz, Lars E. T. Jansen, Ben E. Black & Don W. Cleveland
Department of Medicine, University of California at San Diego, La Jolla, 92093–0670, CA, USA
Don W. Cleveland
Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093–0670, CA, USA
Daniel R. Foltz, Lars E. T. Jansen, Ben E. Black & Don W. Cleveland
The Scripps Research Institute, La Jolla, 92037, CA, USA
Aaron O. Bailey & John R. Yates III
- Daniel R. Foltz
You can also search for this author inPubMed Google Scholar
- Lars E. T. Jansen
You can also search for this author inPubMed Google Scholar
- Ben E. Black
You can also search for this author inPubMed Google Scholar
- Aaron O. Bailey
You can also search for this author inPubMed Google Scholar
- John R. Yates III
You can also search for this author inPubMed Google Scholar
- Don W. Cleveland
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDon W. Cleveland.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures S1, S2, S3 and Supplementary Table S1 (PDF 869 kb)
Supplementary Information
Supplementary Movie 1 (MOV 217 kb)
Supplementary Information
Supplementary Movie 2 (MOV 636 kb)
Rights and permissions
About this article
Cite this article
Foltz, D., Jansen, L., Black, B.et al. The human CENP-A centromeric nucleosome-associated complex.Nat Cell Biol8, 458–469 (2006). https://doi.org/10.1038/ncb1397
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Upregulation of CENPM is associated with poor clinical outcome and suppression of immune profile in clear cell renal cell carcinoma
- Zhi-Cheng Zhang
- Yi-Fu Liu
- Bin-Bin Gong
Hereditas (2023)
The Mis6 inner kinetochore subcomplex maintains CENP-A nucleosomes against centromeric non-coding transcription during mitosis
- Hayato Hirai
- Yuki Shogaki
- Masamitsu Sato
Communications Biology (2022)
Recruitment of two Ndc80 complexes via the CENP-T pathway is sufficient for kinetochore functions
- Yusuke Takenoshita
- Masatoshi Hara
- Tatsuo Fukagawa
Nature Communications (2022)
Mobility of kinetochore proteins measured by FRAP analysis in living cells
- Reito Watanabe
- Yasuhiro Hirano
- Tatsuo Fukagawa
Chromosome Research (2022)
Construction of a prognostic model with histone modification-related genes and identification of potential drugs in pancreatic cancer
- Yuan Chen
- Ruiyuan Xu
- Yupei Zhao
Cancer Cell International (2021)