Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Cell Biology
  • Brief Communication
  • Published:

A new phospholipase-C–calcium signalling pathway mediated by cyclic AMP and a Rap GTPase

Nature Cell Biologyvolume 3pages1020–1024 (2001)Cite this article

Abstract

Stimulation of phosphoinositide-hydrolysing phospholipase C (PLC) generating inositol-1,4,5-trisphosphate is a major calcium signalling pathway used by a wide variety of membrane receptors, activating distinct PLC-β or PLC-γ isoforms1,2,3,4. Here we report a new PLC and calcium signalling pathway that is triggered by cyclic AMP (cAMP) and mediated by a small GTPase of the Rap family. Activation of the adenylyl cyclase-coupled β2-adrenoceptor expressed in HEK-293 cells or the endogenous receptor for prostaglandin E1 in N1E-115 neuroblastoma cells induced calcium mobilization and PLC stimulation, seemingly caused by cAMP formation, but was independent of protein kinase A (PKA). We provide evidence that these receptor responses are mediated by a Rap GTPase, specifically Rap2B, activated by a guanine-nucleotide-exchange factor (Epac) regulated by cAMP5,6, and involve the recently identified PLC-ɛ isoform7,8,9.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β2-AR- and forskolin-induced calcium and PLC signalling.
Figure 2: β2-AR- and forskolin-induced PLC and calcium signalling is independent of PKA and potentiated by Epac1.
Figure 3: Inhibition of β2-AR- and forskolin-induced PLC and calcium signalling by toxin B-1470 and an inactive Rap2B mutant.
Figure 4: Potentiation of β2-AR- and forskolin-induced PLC and calcium signalling by PLC-ɛ.
Figure 5: Influence of Rap2B on PLC-ɛ activity.

Similar content being viewed by others

References

  1. Berridge, M. J. & Irvine, R. F.Nature341, 197–205 (1989).

    Article CAS  Google Scholar 

  2. Berridge, M. J., Lipp, P. & Bootman, M. D.Nature Rev. Mol. Cell Biol.1, 11–21 (2000).

    Article CAS  Google Scholar 

  3. Exton, J. H.Annu. Rev. Pharmacol. Toxicol.36, 481–509 (1996).

    Article CAS  Google Scholar 

  4. Rhee, S. G. & Bae, Y. S.J. Biol. Chem.272, 15045–15048 (1997).

    Article CAS  Google Scholar 

  5. De Rooij, J. et al.Nature396, 474–477 (1998).

    Article CAS  Google Scholar 

  6. De Rooij, J. et al.J. Biol. Chem.275, 20829–20836 (2000).

    Article CAS  Google Scholar 

  7. Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. & Lomasney, J. W.J. Biol. Chem.276, 2758–2765 (2001).

    Article CAS  Google Scholar 

  8. Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V.EMBO J.20, 743–754 (2001).

    Article CAS  Google Scholar 

  9. Song, C. et al.J. Biol. Chem.276, 2752–2757 (2001).

    Article CAS  Google Scholar 

  10. Park, D. J., Min, H. K. & Rhee, S. G.J. Biol. Chem.267, 1496–1501 (1992).

    CAS PubMed  Google Scholar 

  11. Liu, M. & Simon, M. I.Nature382, 83–87 (1996).

    Article CAS  Google Scholar 

  12. Meyer zu Heringdorf, D. et al.EMBO J.17, 2830–2837 (1998).

    Article CAS  Google Scholar 

  13. Schmidt, M. et al.J. Biol. Chem.275, 32603–32610 (2000).

    Article CAS  Google Scholar 

  14. Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J.Nature390, 88–91 (1997).

    Article CAS  Google Scholar 

  15. Hanoune, J. & Defer, N.Annu. Rev. Pharmacol. Toxicol.41, 145–174 (2001).

    Article CAS  Google Scholar 

  16. Walsh, D. A. & van Patten, S. M.FASEB J.8, 1227–1236 (1994).

    Article CAS  Google Scholar 

  17. Chijiwa, T. et al.J. Biol. Chem.265, 5267–5272 (1990).

    CAS  Google Scholar 

  18. Schmidt, M. et al.J. Biol. Chem.273, 7413–7422 (1998).

    Article CAS  Google Scholar 

  19. Just, I. et al.Nature375, 500–503 (1995).

    Article CAS  Google Scholar 

  20. Voβ, M. et al.J. Biol. Chem.274, 34691–34698 (1999).

    Article  Google Scholar 

  21. Murthy, S. N. P., Lomasney, J. W., Mak, E. C. & Lorand, L.Proc. Natl Acad. Sci. USA96, 11815–11819 (1999).

    Article CAS  Google Scholar 

  22. Kim, Y.-H. et al.J. Biol. Chem.274, 26127–26134 (1999).

    Article CAS  Google Scholar 

  23. Matsuzawa, H. & Nirenberg, M.Proc. Natl Acad. Sci. USA72, 3472–3476 (1975).

    Article CAS  Google Scholar 

  24. Kanba, S. et al.J. Neurochem.57, 2011–2015 (1991).

    Article CAS  Google Scholar 

  25. Missale, C., Nash, R., Robinson, S. W., Jaber, M. & Caron M. G.Physiol. Rev.78, 189–225 (1998).

    Article CAS  Google Scholar 

  26. de la Peña, P., del Camino, D., Prado, L. A., Domínguez, P. & Barros, F.J. Biol. Chem.270, 3554–3559 (1995).

    Article  Google Scholar 

  27. Lin, C. W. et al.Mol. Pharmacol.47, 131–139 (1995).

    CAS PubMed  Google Scholar 

  28. Chik, C. L. et al.J. Neurochem.67, 1005–1013 (1996).

    Article CAS  Google Scholar 

  29. Daniel, P. B., Kieffer, T. J., Leech, C. A. & Habener, J. F.J. Biol. Chem.276, 12938–12944 (2001).

    Article CAS  Google Scholar 

  30. Bos, J. L.EMBO J.17, 6776–6782 (1998).

    Article CAS  Google Scholar 

  31. Bos, J. L., de Rooij, J. & Reedquist, K. A.Nature Rev. Mol. Cell Biol.2, 369–377 (2001).

    Article CAS  Google Scholar 

  32. Evellin, S. et al.Naunyn-Schmiedeberg's Arch. Pharmacol.363, R61 (2001).

    Google Scholar 

  33. Zhang, C., Schmidt, M., von Eichel-Streiber, C. & Jakobs, K. H.Mol. Pharmacol.50, 864–869 (1996).

    CAS PubMed  Google Scholar 

  34. Schmidt, M. et al.Naunyn-Schmiedeberg's Arch. Pharmacol.354, 87–94 (1996).

    Article CAS  Google Scholar 

  35. Van den Berghe, N., Cool, R. H., Horn, G. & Wittinghofer, A.Oncogene15, 845–850 (1997).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Baden, M. Hagedorn, H. Geldermann, D. Petermeyer, M. Michel and A. Rueppel for expert technical assistance, and R. Jockers, J. de Gunzburg, J. L. Bos, A. Wittinghofer and C. von Eichel-Streiber for providing various DNA constructs and proteins. This work was supported by the Deutsche Forschungsgemeinschaft, the Interne Forschungsförderung Essen (IFORES), the Fonds der Chemischen Industrie and the Council of Earth and Life Sciences and Chemical Sciences of The Netherlands Organisation for Scientific Research.

Author information

Author notes
  1. Martina Schmidt and Sandrine Evellin: These authors contributed equally to this work

Authors and Affiliations

  1. Institut für Pharmakologie, Universitätsklinikum Essen, Essen, 45122, Germany

    Martina Schmidt, Sandrine Evellin, Paschal A. Oude Weernink, Frank vom Dorp & Karl H. Jakobs

  2. Max-Planck-Institut für Molekulare Physiologie, Dortmund, 44227, Germany

    Holger Rehmann

  3. Department of Physiological Chemistry and Centre for Biomedical Genetics, UMC Utrecht, Utrecht, 3584 CG, The Netherlands

    Holger Rehmann

  4. Departments of Pathology and Pharmacology, Northwestern University Medical School, Chicago, 60611-3008, Illinois, USA

    Jon W. Lomasney

Authors
  1. Martina Schmidt

    You can also search for this author inPubMed Google Scholar

  2. Sandrine Evellin

    You can also search for this author inPubMed Google Scholar

  3. Paschal A. Oude Weernink

    You can also search for this author inPubMed Google Scholar

  4. Frank vom Dorp

    You can also search for this author inPubMed Google Scholar

  5. Holger Rehmann

    You can also search for this author inPubMed Google Scholar

  6. Jon W. Lomasney

    You can also search for this author inPubMed Google Scholar

  7. Karl H. Jakobs

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMartina Schmidt.

Supplementary information

Figure S1

PGE1- and forskolin-induced PLC stimulation in N1E-115 neuroblastoma cells: role of cAMP, PKA, Epac1, Rap2B and PLC-ɛ (PDF 44 kb)

Rights and permissions

About this article

Cite this article

Schmidt, M., Evellin, S., Weernink, P.et al. A new phospholipase-C–calcium signalling pathway mediated by cyclic AMP and a Rap GTPase.Nat Cell Biol3, 1020–1024 (2001). https://doi.org/10.1038/ncb1101-1020

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp