Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Article
  • Published:

Characterization of the human heart mitochondrial proteome

Nature Biotechnologyvolume 21pages281–286 (2003)Cite this article

Abstract

To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of proteins based on physiochemical properties.
Figure 2: Distribution of the 498 functionally classified proteins.
Figure 3: Recombinant LETM1 localizes to mitochondria.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Chinnery, P.F., Howell, N., Andrews, R.M. & Turnbull, D.M. Clinical mitochondrial genetics.J. Med. Genet.36, 425–36 (1999).

    Article CAS  Google Scholar 

  2. Terkeltaub, R., Johnson, K., Murphy, A. & Ghosh, S. The mitochondrion in osteoarthritis.Mitochondrion1, 301–309 (2002).

    Article CAS  Google Scholar 

  3. Scharfe, C. et al. MITOP, the mitochondrial proteome database: 2000 update.Nucleic Acids Res.28, 155–8 (2000).

    Article CAS  Google Scholar 

  4. Taylor, S.W., Fahy, E. & Ghosh, S.S. Global organellar proteomics.Trends Biotechnol.21, 82–88 (2003).

    Article CAS  Google Scholar 

  5. Hanson, B.J., Schulenberg, B., Patton, W.F. & Capaldi, R.A. A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map.Electrophoresis22, 950–959 (2001).

    Article CAS  Google Scholar 

  6. Taylor, S.W. et al. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria.J. Proteome Res.1, 451–458 (2002).

    Article CAS  Google Scholar 

  7. Rappsilber, J., Ryder, U., Lamond, A.I. & Mann, M. Large-scale proteomic analysis of the human spliceosome.Genome Res.12, 1231–1245 (2002).

    Article CAS  Google Scholar 

  8. Schwartz, R., Ting, C.S. & King, J. Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life.Genome Res.11, 703–709 (2001).

    Article CAS  Google Scholar 

  9. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein.J. Mol. Biol.157, 105–132 (1982).

    Article CAS  Google Scholar 

  10. Sonnhammer, E.L., Eddy, S.R. & Durbin, R. Pfam: a comprehensive database of protein domain families based on seed alignments.Proteins28, 405–420 (1997).

    Article CAS  Google Scholar 

  11. Fearnley, I.M. et al. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I).J. Biol. Chem.276, 38345–38348 (2001).

    Article CAS  Google Scholar 

  12. Carroll, J., Shannon, R.J., Fearnley, I.M., Walker, J.E. & Hirst, J. Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I: identification of two new subunits.J. Biol. Chem.277, 50311–50317 (2002).

    Article CAS  Google Scholar 

  13. Yaffe, M.B. How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis.FEBS Lett.513, 53–57 (2002).

    Article CAS  Google Scholar 

  14. Fountoulakis, M., Berndt, P., Langen, H. & Suter, L. The rat liver mitochondrial proteins.Electrophoresis23, 311–328 (2002).

    Article CAS  Google Scholar 

  15. Lopez, M.F. et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation.Electrophoresis21, 3427–3440 (2000).

    Article CAS  Google Scholar 

  16. Rabilloud, T. et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome.Electrophoresis19, 1006–1014 (1998).

    Article CAS  Google Scholar 

  17. Scheffler, N.K. et al. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line.Mitochondrion1, 161–179 (2001).

    Article CAS  Google Scholar 

  18. Palmieri, L. et al. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria.Embo. J.20, 5060–5069 (2001).

    Article CAS  Google Scholar 

  19. Simpson, P.B. & Russell, J.T. Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia.Biochem. J.325, 239–247 (1997).

    Article CAS  Google Scholar 

  20. Koc, E.C. et al. The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.J. Biol. Chem.276, 43958–43969 (2001).

    Article CAS  Google Scholar 

  21. Suzuki, T. et al. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria.J. Biol. Chem.276, 21724–21736 (2001).

    Article CAS  Google Scholar 

  22. Cavdar Koc, E., Burkhart, W., Blackburn, K., Moseley, A. & Spremulli, L.L. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.J. Biol. Chem.276, 19363–19374 (2001).

    Article CAS  Google Scholar 

  23. Suzuki, T. et al. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit.J. Biol. Chem.276, 33181–33195 (2001).

    Article CAS  Google Scholar 

  24. Grandier-Vazeille, X. et al. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex.Biochemistry40, 9758–9769 (2001).

    Article CAS  Google Scholar 

  25. Bardel, J. et al. A survey of the plant mitochondrial proteome in relation to development.Proteomics2, 880–898 (2002).

    Article CAS  Google Scholar 

  26. Patterson, S.D. et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition.Cell Death. Differ.7, 137–44 (2000).

    Article CAS  Google Scholar 

  27. Rabilloud, T. et al. The mitochondrial antioxidant defence system and its response to oxidative stress.Proteomics1, 1105–1110 (2001).

    Article CAS  Google Scholar 

  28. Tanveer, A. et al. Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress.Eur. J. Biochem.238, 166–172 (1996).

    Article CAS  Google Scholar 

  29. Paschen, S.A. & Neupert, W. Protein import into mitochondria.IUBMB Life52, 101–112 (2001).

    Article CAS  Google Scholar 

  30. Mori, M. & Terada, K. Mitochondrial protein import in animals.Biochim. Biophys. Acta1403, 12–27 (1998).

    Article CAS  Google Scholar 

  31. Meisinger, C. et al. Protein import channel of the outer mitochondrial membrane: a highly stable Tom40-Tom22 core structure differentially interacts with preproteins, small tom proteins, and import receptors.Mol.Cell Biol.21, 2337–2348 (2001).

    Article CAS  Google Scholar 

  32. Abdul, K.M. et al. Functional analysis of human metaxin in mitochondrial protein import in cultured cells and its relationship with the Tom complex.Biochem. Biophys. Res. Commun.276, 1028–1034 (2000).

    Article CAS  Google Scholar 

  33. Hartmann, C.M., Gehring, H. & Christen, P. The mature form of imported mitochondrial proteins undergoes conformational changes upon binding to isolated mitochondria.Eur. J. Biochem.218, 905–10 (1993).

    Article CAS  Google Scholar 

  34. Parry, D.M. & Pedersen, P.L. Intracellular localization of rat kidney hexokinase. evidence for an association with low density mitochondria.J. Biol. Chem.259, 8917–8923 (1984).

    CAS PubMed  Google Scholar 

  35. Pastorino, J.G., Shulga, N. & Hoek, J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochromec release and apoptosis.J. Biol. Chem.277, 7610–7618 (2002).

    Article CAS  Google Scholar 

  36. Heggeness, M.H., Simon, M. & Singer, S.J. Association of mitochondria with microtubules in cultured cells.Proc. Natl. Acad. Sci. USA75, 3863–3866 (1978).

    Article CAS  Google Scholar 

  37. Carré, M. et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel.J. Biol. Chem.277, 33664–33669 (2002).

    Article  Google Scholar 

  38. Dzeja, P.P., Bortolon, R., Perez-Terzic, C., Holmuhamedov, E.L. & Terzic, A. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer.Proc. Natl. Acad. Sci. USA99, 10156–10161 (2002).

    Article CAS  Google Scholar 

  39. Pflieger, D. et al. Systematic identification of mitochondrial proteins by LC-MS/MS.Anal. Chem.74, 2400–2406 (2002).

    Article CAS  Google Scholar 

  40. Murray, J., Gilkerson, R. & Capaldi, R. Quantitative proteomics: the copy number of pyruvate dehydrogenase is more than 102-fold lower than that of complex III in human mitochondria.FEBS Lett.529, 173 (2002).

    Article CAS  Google Scholar 

  41. Model, K. et al. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex.J. Mol. Biol.316, 657–666 (2002).

    Article CAS  Google Scholar 

  42. Kumar, A. et al. Subcellular localization of the yeast proteome.Genes Dev.16, 707–719 (2002).

    Article CAS  Google Scholar 

  43. Pfeffer, S.R. Rab GTPases: specifying and deciphering organelle identity and function.Trends Cell Biol.11, 487–491 (2001).

    Article CAS  Google Scholar 

  44. Endele, S., Fuhry, M., Pak, S.J., Zabel, B.U. & Winterpacht, A. LETM1, a novel gene encoding a putative EF-hand Ca2+-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients.Genomics60, 218–225 (1999).

    Article CAS  Google Scholar 

  45. Caggese, C. et al. Identification of nuclear genes encoding mitochondrial proteins: isolation of a collection ofD. melanogaster cDNAs homologous to sequences in the Human Gene Index database.Mol. Gen. Genet.261, 64–70 (1999).

    Article CAS  Google Scholar 

  46. Ho, Y. et al. Systematic identification of protein complexes inSaccharomyces cerevisiae by mass spectrometry.Nature415, 180–183 (2002).

    Article CAS  Google Scholar 

  47. Storrie, B. & Madden, E.A. Isolation of subcellular organelles.Methods Enzymol.182, 203–225 (1990).

    Article CAS  Google Scholar 

  48. Aggeler, R.J. et al. A functionally-active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines: subunit structure and activity studies.J. Biol. Chem.277, 33906–33912 (2002).

    Article CAS  Google Scholar 

  49. Clauser, K.R., Baker, P. & Burlingame, A.L. Role of accurate mass measurement (+/−10 ppm) in protein identification strategies employing MS or MS/MS and database searching.Anal. Chem.71, 2871–2882 (1999).

    Article CAS  Google Scholar 

  50. Ducret, A., Van Oostveen, I., Eng, J.K., Yates, J.R., 3rd & Aebersold, R. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry.Protein Sci.7, 706–719 (1998).

    Article CAS  Google Scholar 

  51. Field, H.I., Fenyo, D. & Beavis, R.C. RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database.Proteomics2, 36–47 (2002).

    Article CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Neil Howell and Christen Anderson for helpful comments, and Paul Haynes and Ross Hoffman for technical advice.

Author information

Authors and Affiliations

  1. MitoKor, 11494 Sorrento Valley Road, San Diego, 92121, California

    Steven W. Taylor, Eoin Fahy, Bing Zhang, Gary M. Glenn, Dale E. Warnock, Sandra Wiley, Anne N. Murphy & Soumitra S. Ghosh

  2. Buck Institute for Age Research, Novato, 94945, California

    Sara P. Gaucher & Bradford W. Gibson

  3. Institute for Molecular Biology, University of Oregon, Eugene, 97403, Oregon

    Roderick A. Capaldi

Authors
  1. Steven W. Taylor
  2. Eoin Fahy
  3. Bing Zhang
  4. Gary M. Glenn
  5. Dale E. Warnock
  6. Sandra Wiley
  7. Anne N. Murphy
  8. Sara P. Gaucher
  9. Roderick A. Capaldi
  10. Bradford W. Gibson
  11. Soumitra S. Ghosh

Corresponding author

Correspondence toSteven W. Taylor.

Ethics declarations

Competing interests

MitoKor is a for-profit biotechnology company that has focused on using the mitochondrion as a platform for drug discrovery. Some proteins disclosed in the article are potential molecular drug targets for which patent applications have been, or will be, filed.

Supplementary information

Supplementary Figure 1.

Metrizamide gradient purified human heart mitochondria are highly depleted of plasma membrane, cytosol and organellar markers. (PDF 997 kb)

The purity of metrizamide purified mitochondria (lanes 3) compared to the initial human heart homogenate (lanes 1) and differential centrifugation purified mitochondria (lanes 2) was assessed. Equivalent loads of 25 μg (Panels A. B. and C.) or 90 μg (Panel D.) of each sample were separated by 4-12% NuPAGE. Western analysis was carried out with antibodies reactive toward proteins from various cellular locations.

Panel A shows Coomassie staining of protein in each fraction. Panel B. depicts the enrichment of components of the electron transport chain. Complex V was detected with Molecular Probes antibody cat.# A-21350 to ATPase alpha. Complex III was detected with Molecular Probes antibody cat.# A-21362 to Core I. Complex I was detected with Molecular Probes antibody cat.# A -21344 to NDUFA9. Complex IV was detected with Molecular Probes antibody cat.# A-21348 specific for Cox4. Further analysis of mitochondria specific markers is shown in Panel C. HSP 60, a matrix protein, was visualized with an antibody from Stressgen cat.# SPA-806. VDAC, a marker of the outer mitochondrial membrane, was detected with CalBioChem antibody cat.# 529538. Rab-11, after LC/MS/MS identification described in this paper, was confirmed to localize specifically to mitochondria using BD Transduction Labs antibody cat.#610656. These Western analyses demonstrate a good enrichment and integrity of mitochondria following metrizamide purification.

Reduced reactivity was detected in the DC mitochondria (lanes 2) and metrizamide mitochondria (lanes 3) by varous protein markers for nonmitochondrial proteomes, shown in Panel D. Dynamin II (cytosol/plasma membane), detected with BD Transduction Labs antibody cat.#D27120, Grp 95 and Grp 76 which contain the KDEL epitope (endoplasmic reticulum), detected with Stressgen antibody cat.#SPA-827, LAMP-1 (lysosome), detected with Santa Cruz Biotechnology antibody cat.#sc -17768, and alpha actin (cytosol), detected with Sigma antibody cat.#A2172 are depicted. Filters shown in Panel D were scanned on a Fluor-S Max Imaging System (BioRad) and quantitated using QuantityOne software. By this analysis, dynamin II was depleted by 95%, LAMP-1 by 98%, a-actin by 99%, Grp95 by 97%, and Grp76 by 95% in the metrizamide purified mitochondria relative to the initial human heart homogenate.

Supplementary Figure 2.

Plots of gel slice vs average molecular weight value of SEQUEST hits for sucrose density gradient fractions and pellet. (PDF 23 kb)

Supplementary Figure 3.

Distribution of the five complexes of the oxidative phosphorylation machinery within the sucrose gradient plotted as the number of SEQUEST matches (according to the threshold criteria in the Supplementary Information) to tryptic peptides of each of their subunits. Compare with the plot of Western intensities in Taylor et al.J. Proteome Research1, 451–458 (2002). The distribution of selected proteins discussed in the text throughout the gradient is shown. Abbreviations: PHB's, prohibitins; SSBP, single stranded mitochondrial DNA binding protein; mtRBP's, mitochondrial ribosomal DNA binding proteins; cMDH, cytosolic malate dehydrogenase; GK, glycerol kinase; ICDH, isocitrate dehydrogenase; MXN, metaxin 2; mtMDH, mitochondrial MDH; CS, citrate synthase; AC, aconitase; FH, fumarate hydratase; LDH, lactate dehydrogenase; ADH, aldehyde dehydrogenase. (PDF 13 kb)

Rights and permissions

About this article

Cite this article

Taylor, S., Fahy, E., Zhang, B.et al. Characterization of the human heart mitochondrial proteome.Nat Biotechnol21, 281–286 (2003). https://doi.org/10.1038/nbt793

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

'Omics' of the mitochondrion

  • Benedikt Westermann
  • Walter Neupert
Nature BiotechnologyNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp