- Research Review
- Published:
Scanning of nucleic acids by in vitro amplification: New developments and applications
Nature Biotechnologyvolume 14, pages1668–1674 (1996)Cite this article
178Accesses
40Citations
12Altmetric
Abstract
Nucleic acids can be characterized using a variety of “fingerprinting” techniques usually based on nucleic acid hybridization or enzymatic amplification. The scanning of nucleic acids by amplification with arbitrary ollgonucleotide primers has become popular because it can generate simple-to-complex patterns from anonymous DNA or RNA templates without requiring prior knowledge of nucleic acid sequence or cloned or characterized probes. Discrete loci are amplified within genomic DNA, DNA complementary to mRNA populations (cDNA), cloned DNA fragments, and even PCR products. The potential and limitations of the various genome scanning techniques, novel improvements, and their recent use in comparative and experimental biology applications, including the analysis of plant and bacterial genomes are discussed.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Schildkraut, C.L., Marmur, J., and Doty, P. 1961. The formation of hybrid DNA molecules aid their use in studies of DNA homologies.J. Mol. Biol.3: 595–617.
Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol.98: 503–517.
Kleppe, K., Ohtsuka, E., Kteppe, R., Molineux, I., and Khorana, H.G. 1971. Studies on polynudeotides. XCVI. Repair replication of short synthetic DNA's as catalyzed by DNA polymerases.J. Mol. Biol.56: 341–361.
Landegren, U. 1993. Molecular mechanics of nucleic acid sequence amplification.Trends Genet.9: 199–204.
Jeffreys, A.J. and Pena, S.D.J. 1993. Brief introduction to human DNA fingerprinting, pp. 1–20 inDNA Fingerprinting: State of the Science. Pena, S.D.J., Chakraborty, R., Epplen, J.T., and Jeffreys, A.J. (eds.). Birkhauser, Basel.
Tautz, D. 1993. Notes on the definition and nomenclature of tandemly repetitive DNA sequences, pp. 21–28 inDNA Fingerprinting: State of the Science. Pena, S.D.J., Chakraborty, R., Epplen, J.T., and Jeffreys, A.J. (eds.). Birkhauser, Basel.
Charlesworth, B., Sniegowski, P., and Stephan, W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes.Nature371: 215–220.
Berg, D.E., and Howe, M.M. 1989.Mobile DNA. American Society for Microbiology, Washington, DC.
Britten, R.J., Baron, W.F., Stout, D.B., and Davidson, E.H. 1988. Sources and evolution of humanAlu repeated sequences.Proc. Natl. Acad. Sci. USA85: 4770–4774.
Karlin, S. and Brendel, V. 1992. Chance and statistical significance in protein and DNA sequence analysis.Science257: 39–49.
Karlin, S. and Cardon, L.R. 1994. Computational DNA sequence analysis.Annu. Rev. Microbiol.48: 619–654.
Tautz D., Trick, M., and Dover, G.A. 1986. Cryptic simplicity in DNA is a major source of genetic variation.Nature322: 652–656.
Livak, K.J., Rafalski, J.A., Tingey, S.V., and Williams, J.G. 1992. Process for detecting polymorphisms on the basis of nucleotide differences. US Patent 5,126,239.
Bassam, B.J., Caetano-Anollés, G., and Gresshoff, P.M. 1995. Method for profiling nucleic acids of unknown sequence using arbitrary oligonucleotide primers. US Patent 5,413,909.
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Res.18: 6531–6535.
Welsh, J., and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Res.19: 861–866.
Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M. 1991. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers.Bio/Technology9: 553–557.
Caetano-Anollés, G. 1993. Amplifying DNA with arbitrary primers.PCR Methods Applic.3: 85–94.
Mullis, K.B. and Faloona, F.A. 1987. Specific synthesis of DNA in vitro via a polymerase catalyzed reaction.Meth. Enzymol.255: 335–350.
Caetano-Anollés, G. 1994. MAAP: a versatile and universal tool for genome analysis.Plant Mol. Biol.25: 1011–1026.
Williams, J.K., Hanafey, M.K., Rafaski, J.A., and Tingey, S.V. 1993. Genetic analysis using random amplified polymorphic DNA markers.Meth. Enzymol.218: 704–740.
Rafalski, J.A. and Tingey, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines.Trends Genet.9: 275–279.
McClelland, M., Mathieu-Daude, F., and Welsh, J. 1995. RNA fingerprinting and differential display using arbitrarily primed PCR.Trends Genet.11: 242–246.
Hadrys, H., Balick, M., and Schierwater, B. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology.Mol. Ecol.1: 55–63.
Weising, K., Nybom, H., Wolff, K., and Meyer, W. 1994.DNA fingerprinting in plants and fungi. CRC Press, Boca Raton, FL.
Reiter, R.S., Williams, J., Feldmann, K.A., Rafalski, J.A., Tingey, S.V., and Soclnik, P.A. 1992.Global and local genome mapping inArabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNA.Proc. Natl. Acad. Sci. USA89: 1477–1481.
Michelmore, R.W., Paran, I., and Kesseli, R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proc. Natl. Acad. Sci. USA88: 9828–9832.
Martin, G.B., Williams, J.G.K., and Tanksley, S.D. 1991. Rapid identification of markers linked to aPseudomonas resistance gene in tomato by using random primers and near isogenic lines.Proc. Natl. Acad. Sci. USA89: 2336–2340.
Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M. 1993. Enhanced detection of polymorphic DNA by multiple arbitrary amplicon profiling of endonuctease digested DNA: identification of markers tightly linked to the supemodulation locus in soybean.Mol. Gen. Genet.241: 57–64.
Martin, G.B., Brommonschenkel, S.H., Chungwongse, J., Frary, A., Ganal, M.W., Spivey, R., et al. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato.Science262: 1432–1436.
Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotjc messenger RNA by means of the polymerase chain reaction.Science257: 967–971.
Welsh, J., Chada, K., Dalal, S.S., Cheng, R., Ralph, D., and McClelland, M. 1992. Arbitrarily primed PCR fingerprinting of RNA.Nucleic Acids Res.20: 4965–4970.
Caetano Anollés, G., and Gresshoff, P.M. 1994. DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers.Bio/Technology12: 619–623.
Sakallah, S.A., Lanning, R.W., and Cooper, D.L. 1995. DNA fingerprinting of crude bacterial lysates using degenerate RAPD primers.PCR Meth. Applic.4: 265–268.
Vos, P., Hogers, R., Bleeker, M., Reijans, M. van de Lee, T., Hornes, M., et al. 1995. AFLP: a new technique for DNA fingerprinting.Nucleic Acids Res.23: 4407–4414.
Caetano-Anollés, G. and Gresshoff, P.M. 1996. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.Biotechniques20: 1044–1056.
Meyer, W., Mitchel, T.G., Freedman, E.Z., and Vilgalys, R. 1993. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans.J. Clin. Microbiol.31: 2274–2280.
Perring, T.M., Cooper, A.D., Rodriguez, R.J., Farrar, C.A., and Bellows, T.S. 1993. Identification of whiteflies species by genomic and behavioral studies.Science259: 74–77.
Weising, K., Atkinson, R.G., and Gardner, R.C. 1995. Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation.PCR Methods Applic.4: 249–255.
Zietkiewicz, E., Rafalski, A., and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics20: 176–183.
Wu, K., Jones, R., Danneberger, L., and Scolnik, P.A. 1994. Detection of microsatellite polymorphisms without cloning.Nucleic Acids Res.22: 3257–3258.
Richardson, T., Cato, S., Ramser, J., Kahl, G., and Weising, K. 1995. Hybridization of microsatellites to RAPD: a new source of polymorphic markers.Nucleic Acids Res.23: 3798–3799.
Ender, A., Schwenk, K., Städler, T., Streit, B., and Schierwater, B. 1996. RAPD identification of microsatellites inDaphnia .Mol Ecol.5: 437–441.
Cifarelli, R.A., Gallitelli, M., and Cellini, F. 1995. Random amplified hybridization microsatellites (RAHM): Isolation of a new class of microsatellite-containing DNA clones.Nucleic Acids Res.23: 3802–3803.
Matioli, S.R. and de Brito, R.A. 1995. Obtaining genetic markers by using double-stringency PCR with microsatellites and arbitrary primers.Biotechniques19: 752–758.
Bauer, D., Müller, H., Reich, J., Riedel, H., Ahrenkiel, V., Warthoe, P., and Strauss, M. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR).Nucleic Acids. Res.21: 4272–4280.
Liang, P., Averboukh, L., and Pardee, A.B. 1993. Distribution and cloning of eukaryotjc mRNAs by means of differential display: refinements and optimization.Nucleic Acids Res.21: 3269–3275.
Liang, P., Zhu, W., Zhang, X., Guo, Z., O'Connell, R.P., Averboukh, L., et al. 1994. Differential display using one-base anchored oligo-dT primers.Nucleic Acids Res.22: 5763–5764.
Murphy, N.B. and Pellé, R. 1994. The use of arbitrary primers and the RADES method for the rapid identification of developmentally regulated genes in trypanosomes.Gene141: 53–61.
Stone, B. and Wharton, W. 1994. Targeted RNA fingerprinting: The cloning of differentially-expressed cDNA fragments enriched for members of the zinc finger gene family.Nucleic Acids Res.22: 2612–2618.
Fischer, A., Saedler, H., and Theissen, G. 1995. Restriction fragment length polymorphism-coupled domain directed differential display, a highly efficient technique for expression analysis of multigene families.Proc. Natl. Acad. Sci. USA92: 5331–5335.
Ivanova, N.B. and Belyavsky, A.V. 1995. Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting.Nucleic Acids Res.23: 2954–2958.
Kato, K. 1996. RNA fingerprinting by molecular indexing.Nucleic Acids Res.24: 394–395.
Bachem, C.W.B. van der Hoeven, R.S., de Bruijn, S.M., Vreudenhil, D., Zabeau, M., and Visser, R.G.F. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development.Plant J.9: 745–753.
Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M. 1992. Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucteotides.Mol. Gen. Genet.235: 157–165.
Parker, J.D., Rabinovich, P.S., and Burmer, G. 1991. Targeted gene walking polymerase chain reaction.Nucleic Acid Res.19: 3055–3060.
Venugopal, G., Mohapatra, S., Salo, D., and Mohapatra, S. 1993. Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting.Biochem. Biophys. Res. Commun.197: 1382–1387.
Bertioli, D.J., Schlichter, U.H.A., Adams, M.J., Burrows, P.R., Steinbiß, H.-H., and Antoniw, J.F. 1994. An analysis of differential display shows a strong bias towards high copy number mRNAs.Nucleic Acids Res.23: 4520–4523.
Caetano-Anollés, G. 1996. Fingerprinting nucleic Acids with arbitrary oligonucleotide primers.Agro-Industry Hi-Tech7: 26–35.
Chapco, W. 1995. Theoretical limits on the number of electrophoretic fragments generated by the random amplified polymorphic DNA method.Hereditas122: 179–180.
Schierwater, B., Metzler, D., Krüger, K., and Streit, B. 1996. The effects of nested primer binding sites on the reproducibility of PCR: mathematical modeling and computer simulation studies.J. Comp. Biol.2: 235–251.
Schierwater, B. 1995. Arbitrarily amplified DNA in systematics and phylogenetics.Electrophoresis16: 1643–1647.
Paran, I., and Michelmore, R.W. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce.Theor. Appl. Genet.85: 985–993.
Fritsch, P. and Rieseberg, L.H. 1992. High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plantDatisca glomerata .Nature359: 633–636.
Echt, C.S., Erdahl, L.A., and McCoy, T.J. 1992. Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa.Genome35: 84–87.
Prabhu, R. and Gresshoff, P.M. 1994. Inheritance of polymorphic markers generated by DNA amplification fingerprinting and their use as genetic markers in soybean.Plant Mol. Biol.26: 105–116.
Levitan, D.R. and Grosberg, R.K. 1993. The analysis of paternity and maternity in the marine hydrozoanHydractinia symbiolongicarpus using randomly amplified polymorphic DNA (RAPD) markers.Mol. Ecology2: 315–328.
Bassam, B.J., Caetano-Anollés, G., and Gresshoff, P.M. 1992. DNA amplification fingerprinting of bacteria.Appl. Microbiol. Biotechnol.38: 70–76.
Schierwater, B., and Ender, A. 1993. Different thermostable DNA polymerases may amplify different amplification patterns.Nucleic Acids Res.21: 4647–4648.
Micheli, M.R., Bova, R., Pascale, E., and D'Ambrosio, E. 1994. Reproducible DNA fingerprinting with random amplified polymorphic DNA (RAPD) method.Nucleic Acids Res.22: 1921–1922.
McClelland, M. and Welsh, J. 1994. DNA fingerprinting by arbitrarily primed PCR.PCR Methods Applic.4: S59–S65
Riedy, M.R. Hamilton, W.J. III, and Aquadro, C.F. 1992. Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR.Nucleic Acids Res.20: 918
Scott, M.P., Haymes, K.M., and Williams, S.M. 1992. Parentage analysis using RAPD PCR.Nucleic Acids Res.20: 5493.
Ayliffe, M.A., Lawrence, G.J., Ellis, J.G., and Pryor, A.J. 1994. Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.Nucleic Acids Res.22: 1632–1636.
Hadrys, H., Schierwater, B., Dellaporta, S.L., DeSalle, R., and Buss, L.W. 1993. Determination of paternities in dragonflies by random amplified polymorphic DNA fingerprinting.Mol. Ecol.2: 79–87.
Clark, A.G. and Lanigan, C.M.S. 1993. Prospects of estimating nucleotide divergence with RAPDs.Mol. Biol. Evol.10: 1096–1111.
Cushwa, W.T. and Medrano, J.F. 1996. Applications of the random amplified polymorphic DNA (RAPD) assay for genetic analysis of livestock species.Animal Biotechnol.7: 11–31.
Scott, M.P. and Williams, S.M. 1993. Comparative reproductive success of communally-breeding burying beetles as assessed by PCR with randomly amplified polymorphic DNA.Proc. Natl. Acad. Sci. USA90: 2242–2245.
Sink, K.C. 1983. Taxonomy, pp. 3–9 inPetunia: Monographs on theoretical and applied genetics. Sink, K.G. (ed.). Springer Vertag, New York.
Ferguson, M.C. and Ottley, A.M. 1932. Studies onPetunia. III. A redescription and additional discussion of certain species ofPetunia .Am. J. Bot.19: 385–407.
Cerny, T.A., Caetano-Anollés, G., Trigiano, R.N., and Starman, T.W. 1996. Molecular phylogeny and DNA amplification fingerprinting ofPetunia taxa.Theor. Appl. Genet.92: 1009–1016.
Sink, K.C. 1975. Inheritance of three genes for morphological characters inPetunia hybrida in crosses with fourPetunia species.Can. J. Genet. Cytol.17: 67–74.
Natarella, N.J. and Sink, K.C. 1975. Electrophoretic analysis of proteins and peroxidses of selectedPetunia species and curtivars.Bot. Gaz.136: 20–26.
Craig, R. 1993. Intelectual property protection, pp. 389–104 inGeraniums IV: The grower's manual. White, J.W. (ed.). Ball Publishing, Geneva, IL.
Starman, T.W. and Abbitt, S. 1996. DNA amplification fingerprinting used to distinguish series of cutting, seedling and ivy leaf geranium.HortScience31: 565.
Dowrick, G.J. and El-Bayoumi, A. 1966. The origin of new forms of the gardenChrysanthemum .Euphytica15: 32–38.
Wolff, K., and Van Rijn, J. 1993. Rapid detection of genetic variability in chrysanthemumDendranthema grandiflora Tzvelev using random primers.Heredity71: 335–341.
Wolff, K., Zietkiewicz, E., and Hofstra, H. 1995. Identification of chysanthemum cultivars and stability of DNA fingerprint patterns.Theor. Appl. Genet.91: 439–447.
Wolff, K. 1996. RAPD analysis of sporting and chimerism in chrysanthemum.Euphytica89: 159–164.
Scott, C.M., Caetano-Anollés, G., and Trigiano, R.N. 1996. DNA amplification fingerprinting identifies closely related cultivars of chrysanthemum.J. Am. Soc. Hort. Sci. In press.
Torres, A.M., Millén, T., and Gubero, J.I. 1993. Identifying rose cultivars using ransom amplified polymorphic DNA markers.HortScience28: 333–334.
Marsolais, J.V., Pringle, J.S., and White, B.N. 1993. Assessment of ransom amplified polymorphic DNA (RAPD) as genetic markers for determining the origin of interspecific Lilac hybrids.Taxon42: 531–537.
Lee, W.B., Choi, S.Y., and Kim, Y.S. 1993. An application of random amplified porymorphic DNA (RAPD) to systematics of some species ofLilium in Korea.Kor. J. Plant Taxon.23: 35–42.
Yamagishi, M. 1995. Detection of section-specific random amplified polymorphic DNA (RAPD) markers inLilium .Theor Appl. Genet.91: 830–835.
Cancilla, M.R., Powell, J.B., Hiller, A.J., and Davidson, B.E. 1992. Rapid genomic fingerprinting ofLactococcus lactis strains by arbitrarily primed polymerase chain reaction with32P and fluorescent labels.App. Environ. Microbiol.58: 1772–1775.
Caetano-Anollés, G., Callahan, L.M., Weaver, K.R., Williams, P., and Gresshoff, P.M. 1995. DNA amplification fingerprinting analysis of bermudagrass (Cynodon): genetic relationships between species and interspecific crosses.Theor. Appl. Genet.91: 228–235.
Southern, E.M. 1996. DNA chips: analysing sequence by hybridization to oligonucleotides on a large scale.Trends Genet.12: 110–115.
Chetverin, A.B. and Kramer, F.R. 1994. Oligonucleotide arrays: new concepts and possibilities.Bio/Technology12: 1093–1099.
Strezoska, Z., Punesku, T., Radosavijevic, D., Labat, I., Drmanac, R., and Crkvenjakov, R. 1991. DNA sequencing by hybridization: 100 bases read by a non-gel-based method.Proc. Natl. Acad. Sci. USA88: 10089–10093.
Drmanac, R., Drmanac, S., Strezoska, Z., Paunesku, I., Labat, I., Zeremski, M., et al. 1993. DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing.Science260: 1649–1652.
Maskos, U. and Southern, E.M. 1993. A novel method for the analysis of multiple sequence variants by hybridisation to oligonucleotides.Nucleic Acids Res.21: 2267–2268.
Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, I., et al. 1996. DNA analysis and diagnostics on oligonucleotide microchips.Proc. Natl. Acad. Sci. USA93: 4913–4918.
Nelson, S.F., McCusker, J.H., Sander, M.A., Kee, Y., Modrich, P., and Brown, P.O. 1993. Genomic mismatch scanning: a new approach to genetic linkage mapping.Nature Genetics4: 11–18.
Nikiforov, T.T., Rendle, R.R., Goelet, P., Rogers, Y., Kotewicz, M.L., Anderson, S., et al. 1994. Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms.Nucleic Acids Res.22: 167–4175.
Caetano-Anollés, G. Methods for generation of sequence signatures from nucleic acids. US patent application 08/489,269.
Salazar, N.M. and Caetano-Anollés, G. 1996. Nucleic acid scanning-by-hybridization of enterohemorrhagicEscherichia coli isolates using Oligonucleotide arrays.Nucleic Acids Res. In press.
Whittam, I.S., Wolfe, M.L., Wachsmuth, I.K., Ørkov, F., Ørkov, I., and Wilson, R.A. 1993. Clonal relationships amongEscherichia coli strains that cause hemorrhage colitis and infantile diarrhea.Infect. Immun.61: 1619–1629.
Wang, G., Whittam, T.S., Berg, C.M., and Berg, D.E. 1993. RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme etectrophoresis for distinguishing related bacterial strains.Nucleic Acids Res.21: 5930–5933.
Beattie, K.L., Beattie, W.G., Meng, L., Turner, S.L., Coral-Vazquez, R., Smith, D.D., et al 1995. Advances in genosensor research.Clin. Chem.41: 700–706.
McClelland, M., Ralph, D., Cheng, R., and Welsh, J. 1994. Interactions among regulators of RNA abundance characterized using RNA fingerprinting by arbitrary primed PCR.Nucleic Acids Res.22: 4419–4431.
López-Nieto, C.E. and Nigam, S.K. 1996. Selective amplification of protein-coding regions of large sets of genes using statistically designed primer sets.Nature Biotechnology14: 857–861.
Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. 1995. Serial analysis of gene expression.Science270: 484–487.
Lisitsyn, N., Lisitsyn, N., and Wigler, M. 1993. Cloning the differences between two complex genomes.Science259: 946–943.
Rosenberg, M., Przybylska, M., and Straus, D. 1994. RFLP substraction: a method for making libraries of polymorphic markers.Proc. Natl. Acad. Sci. USA91: 6113–6117.
Watson, J.D. 1993. Looking forward.Gene135: 309–315.
Author information
Authors and Affiliations
Department of Ornamental Horticulture and Landscape Design, University of Tennessee, Knoxville, TN, 37901-1071
Gustavo Caetano-Anollés
- Gustavo Caetano-Anollés
Search author on:PubMed Google Scholar
Rights and permissions
About this article
Cite this article
Caetano-Anollés, G. Scanning of nucleic acids by in vitro amplification: New developments and applications.Nat Biotechnol14, 1668–1674 (1996). https://doi.org/10.1038/nbt1296-1668
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Hybridization of glass-tethered oligonucleotide probes to target strands preannealed with labeled auxiliary oligonucleotides
- Rogelio Maldonado-Rodriguez
- Mercedes Espinosa-Lara
- Kenneth L. Beattie
Molecular Biotechnology (1999)


