Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Research Review
  • Published:

Scanning of nucleic acids by in vitro amplification: New developments and applications

Nature Biotechnologyvolume 14pages1668–1674 (1996)Cite this article

Abstract

Nucleic acids can be characterized using a variety of “fingerprinting” techniques usually based on nucleic acid hybridization or enzymatic amplification. The scanning of nucleic acids by amplification with arbitrary ollgonucleotide primers has become popular because it can generate simple-to-complex patterns from anonymous DNA or RNA templates without requiring prior knowledge of nucleic acid sequence or cloned or characterized probes. Discrete loci are amplified within genomic DNA, DNA complementary to mRNA populations (cDNA), cloned DNA fragments, and even PCR products. The potential and limitations of the various genome scanning techniques, novel improvements, and their recent use in comparative and experimental biology applications, including the analysis of plant and bacterial genomes are discussed.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schildkraut, C.L., Marmur, J., and Doty, P. 1961. The formation of hybrid DNA molecules aid their use in studies of DNA homologies.J. Mol. Biol.3: 595–617.

    Article CAS PubMed  Google Scholar 

  2. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol.98: 503–517.

    Article CAS PubMed  Google Scholar 

  3. Kleppe, K., Ohtsuka, E., Kteppe, R., Molineux, I., and Khorana, H.G. 1971. Studies on polynudeotides. XCVI. Repair replication of short synthetic DNA's as catalyzed by DNA polymerases.J. Mol. Biol.56: 341–361.

    Article CAS PubMed  Google Scholar 

  4. Landegren, U. 1993. Molecular mechanics of nucleic acid sequence amplification.Trends Genet.9: 199–204.

    Article CAS PubMed  Google Scholar 

  5. Jeffreys, A.J. and Pena, S.D.J. 1993. Brief introduction to human DNA fingerprinting, pp. 1–20 inDNA Fingerprinting: State of the Science. Pena, S.D.J., Chakraborty, R., Epplen, J.T., and Jeffreys, A.J. (eds.). Birkhauser, Basel.

    Google Scholar 

  6. Tautz, D. 1993. Notes on the definition and nomenclature of tandemly repetitive DNA sequences, pp. 21–28 inDNA Fingerprinting: State of the Science. Pena, S.D.J., Chakraborty, R., Epplen, J.T., and Jeffreys, A.J. (eds.). Birkhauser, Basel.

    Chapter  Google Scholar 

  7. Charlesworth, B., Sniegowski, P., and Stephan, W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes.Nature371: 215–220.

    Article CAS PubMed  Google Scholar 

  8. Berg, D.E., and Howe, M.M. 1989.Mobile DNA. American Society for Microbiology, Washington, DC.

    Google Scholar 

  9. Britten, R.J., Baron, W.F., Stout, D.B., and Davidson, E.H. 1988. Sources and evolution of humanAlu repeated sequences.Proc. Natl. Acad. Sci. USA85: 4770–4774.

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Karlin, S. and Brendel, V. 1992. Chance and statistical significance in protein and DNA sequence analysis.Science257: 39–49.

    Article CAS PubMed  Google Scholar 

  11. Karlin, S. and Cardon, L.R. 1994. Computational DNA sequence analysis.Annu. Rev. Microbiol.48: 619–654.

    Article CAS PubMed  Google Scholar 

  12. Tautz D., Trick, M., and Dover, G.A. 1986. Cryptic simplicity in DNA is a major source of genetic variation.Nature322: 652–656.

    Article CAS PubMed  Google Scholar 

  13. Livak, K.J., Rafalski, J.A., Tingey, S.V., and Williams, J.G. 1992. Process for detecting polymorphisms on the basis of nucleotide differences. US Patent 5,126,239.

  14. Bassam, B.J., Caetano-Anollés, G., and Gresshoff, P.M. 1995. Method for profiling nucleic acids of unknown sequence using arbitrary oligonucleotide primers. US Patent 5,413,909.

  15. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Res.18: 6531–6535.

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Welsh, J., and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Res.19: 861–866.

    Article  Google Scholar 

  17. Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M. 1991. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers.Bio/Technology9: 553–557.

    Google Scholar 

  18. Caetano-Anollés, G. 1993. Amplifying DNA with arbitrary primers.PCR Methods Applic.3: 85–94.

    Article  Google Scholar 

  19. Mullis, K.B. and Faloona, F.A. 1987. Specific synthesis of DNA in vitro via a polymerase catalyzed reaction.Meth. Enzymol.255: 335–350.

    Article  Google Scholar 

  20. Caetano-Anollés, G. 1994. MAAP: a versatile and universal tool for genome analysis.Plant Mol. Biol.25: 1011–1026.

    Article PubMed  Google Scholar 

  21. Williams, J.K., Hanafey, M.K., Rafaski, J.A., and Tingey, S.V. 1993. Genetic analysis using random amplified polymorphic DNA markers.Meth. Enzymol.218: 704–740.

    Article CAS  Google Scholar 

  22. Rafalski, J.A. and Tingey, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines.Trends Genet.9: 275–279.

    Article CAS PubMed  Google Scholar 

  23. McClelland, M., Mathieu-Daude, F., and Welsh, J. 1995. RNA fingerprinting and differential display using arbitrarily primed PCR.Trends Genet.11: 242–246.

    Article CAS PubMed  Google Scholar 

  24. Hadrys, H., Balick, M., and Schierwater, B. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology.Mol. Ecol.1: 55–63.

    Article CAS PubMed  Google Scholar 

  25. Weising, K., Nybom, H., Wolff, K., and Meyer, W. 1994.DNA fingerprinting in plants and fungi. CRC Press, Boca Raton, FL.

    Google Scholar 

  26. Reiter, R.S., Williams, J., Feldmann, K.A., Rafalski, J.A., Tingey, S.V., and Soclnik, P.A. 1992.Global and local genome mapping inArabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNA.Proc. Natl. Acad. Sci. USA89: 1477–1481.

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Michelmore, R.W., Paran, I., and Kesseli, R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proc. Natl. Acad. Sci. USA88: 9828–9832.

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Martin, G.B., Williams, J.G.K., and Tanksley, S.D. 1991. Rapid identification of markers linked to aPseudomonas resistance gene in tomato by using random primers and near isogenic lines.Proc. Natl. Acad. Sci. USA89: 2336–2340.

    Article  Google Scholar 

  29. Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M. 1993. Enhanced detection of polymorphic DNA by multiple arbitrary amplicon profiling of endonuctease digested DNA: identification of markers tightly linked to the supemodulation locus in soybean.Mol. Gen. Genet.241: 57–64.

    Article PubMed  Google Scholar 

  30. Martin, G.B., Brommonschenkel, S.H., Chungwongse, J., Frary, A., Ganal, M.W., Spivey, R., et al. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato.Science262: 1432–1436.

    Article CAS PubMed  Google Scholar 

  31. Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotjc messenger RNA by means of the polymerase chain reaction.Science257: 967–971.

    Article CAS PubMed  Google Scholar 

  32. Welsh, J., Chada, K., Dalal, S.S., Cheng, R., Ralph, D., and McClelland, M. 1992. Arbitrarily primed PCR fingerprinting of RNA.Nucleic Acids Res.20: 4965–4970.

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Caetano Anollés, G., and Gresshoff, P.M. 1994. DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers.Bio/Technology12: 619–623.

    Google Scholar 

  34. Sakallah, S.A., Lanning, R.W., and Cooper, D.L. 1995. DNA fingerprinting of crude bacterial lysates using degenerate RAPD primers.PCR Meth. Applic.4: 265–268.

    Article CAS  Google Scholar 

  35. Vos, P., Hogers, R., Bleeker, M., Reijans, M. van de Lee, T., Hornes, M., et al. 1995. AFLP: a new technique for DNA fingerprinting.Nucleic Acids Res.23: 4407–4414.

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Caetano-Anollés, G. and Gresshoff, P.M. 1996. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.Biotechniques20: 1044–1056.

    Article PubMed  Google Scholar 

  37. Meyer, W., Mitchel, T.G., Freedman, E.Z., and Vilgalys, R. 1993. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans.J. Clin. Microbiol.31: 2274–2280.

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Perring, T.M., Cooper, A.D., Rodriguez, R.J., Farrar, C.A., and Bellows, T.S. 1993. Identification of whiteflies species by genomic and behavioral studies.Science259: 74–77.

    Article CAS PubMed  Google Scholar 

  39. Weising, K., Atkinson, R.G., and Gardner, R.C. 1995. Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation.PCR Methods Applic.4: 249–255.

    Article CAS  Google Scholar 

  40. Zietkiewicz, E., Rafalski, A., and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics20: 176–183.

    Article CAS PubMed  Google Scholar 

  41. Wu, K., Jones, R., Danneberger, L., and Scolnik, P.A. 1994. Detection of microsatellite polymorphisms without cloning.Nucleic Acids Res.22: 3257–3258.

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Richardson, T., Cato, S., Ramser, J., Kahl, G., and Weising, K. 1995. Hybridization of microsatellites to RAPD: a new source of polymorphic markers.Nucleic Acids Res.23: 3798–3799.

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Ender, A., Schwenk, K., Städler, T., Streit, B., and Schierwater, B. 1996. RAPD identification of microsatellites inDaphnia .Mol Ecol.5: 437–441.

    Article CAS PubMed  Google Scholar 

  44. Cifarelli, R.A., Gallitelli, M., and Cellini, F. 1995. Random amplified hybridization microsatellites (RAHM): Isolation of a new class of microsatellite-containing DNA clones.Nucleic Acids Res.23: 3802–3803.

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Matioli, S.R. and de Brito, R.A. 1995. Obtaining genetic markers by using double-stringency PCR with microsatellites and arbitrary primers.Biotechniques19: 752–758.

    CAS PubMed  Google Scholar 

  46. Bauer, D., Müller, H., Reich, J., Riedel, H., Ahrenkiel, V., Warthoe, P., and Strauss, M. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR).Nucleic Acids. Res.21: 4272–4280.

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Liang, P., Averboukh, L., and Pardee, A.B. 1993. Distribution and cloning of eukaryotjc mRNAs by means of differential display: refinements and optimization.Nucleic Acids Res.21: 3269–3275.

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Liang, P., Zhu, W., Zhang, X., Guo, Z., O'Connell, R.P., Averboukh, L., et al. 1994. Differential display using one-base anchored oligo-dT primers.Nucleic Acids Res.22: 5763–5764.

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Murphy, N.B. and Pellé, R. 1994. The use of arbitrary primers and the RADES method for the rapid identification of developmentally regulated genes in trypanosomes.Gene141: 53–61.

    Article CAS PubMed  Google Scholar 

  50. Stone, B. and Wharton, W. 1994. Targeted RNA fingerprinting: The cloning of differentially-expressed cDNA fragments enriched for members of the zinc finger gene family.Nucleic Acids Res.22: 2612–2618.

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Fischer, A., Saedler, H., and Theissen, G. 1995. Restriction fragment length polymorphism-coupled domain directed differential display, a highly efficient technique for expression analysis of multigene families.Proc. Natl. Acad. Sci. USA92: 5331–5335.

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Ivanova, N.B. and Belyavsky, A.V. 1995. Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting.Nucleic Acids Res.23: 2954–2958.

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Kato, K. 1996. RNA fingerprinting by molecular indexing.Nucleic Acids Res.24: 394–395.

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Bachem, C.W.B. van der Hoeven, R.S., de Bruijn, S.M., Vreudenhil, D., Zabeau, M., and Visser, R.G.F. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development.Plant J.9: 745–753.

    Article CAS PubMed  Google Scholar 

  55. Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M. 1992. Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucteotides.Mol. Gen. Genet.235: 157–165.

    Article PubMed  Google Scholar 

  56. Parker, J.D., Rabinovich, P.S., and Burmer, G. 1991. Targeted gene walking polymerase chain reaction.Nucleic Acid Res.19: 3055–3060.

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Venugopal, G., Mohapatra, S., Salo, D., and Mohapatra, S. 1993. Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting.Biochem. Biophys. Res. Commun.197: 1382–1387.

    Article CAS PubMed  Google Scholar 

  58. Bertioli, D.J., Schlichter, U.H.A., Adams, M.J., Burrows, P.R., Steinbiß, H.-H., and Antoniw, J.F. 1994. An analysis of differential display shows a strong bias towards high copy number mRNAs.Nucleic Acids Res.23: 4520–4523.

    Article  Google Scholar 

  59. Caetano-Anollés, G. 1996. Fingerprinting nucleic Acids with arbitrary oligonucleotide primers.Agro-Industry Hi-Tech7: 26–35.

    Google Scholar 

  60. Chapco, W. 1995. Theoretical limits on the number of electrophoretic fragments generated by the random amplified polymorphic DNA method.Hereditas122: 179–180.

    Article  Google Scholar 

  61. Schierwater, B., Metzler, D., Krüger, K., and Streit, B. 1996. The effects of nested primer binding sites on the reproducibility of PCR: mathematical modeling and computer simulation studies.J. Comp. Biol.2: 235–251.

    Article  Google Scholar 

  62. Schierwater, B. 1995. Arbitrarily amplified DNA in systematics and phylogenetics.Electrophoresis16: 1643–1647.

    Article CAS PubMed  Google Scholar 

  63. Paran, I., and Michelmore, R.W. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce.Theor. Appl. Genet.85: 985–993.

    Article CAS PubMed  Google Scholar 

  64. Fritsch, P. and Rieseberg, L.H. 1992. High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plantDatisca glomerata .Nature359: 633–636.

    Article  Google Scholar 

  65. Echt, C.S., Erdahl, L.A., and McCoy, T.J. 1992. Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa.Genome35: 84–87.

    Article CAS PubMed  Google Scholar 

  66. Prabhu, R. and Gresshoff, P.M. 1994. Inheritance of polymorphic markers generated by DNA amplification fingerprinting and their use as genetic markers in soybean.Plant Mol. Biol.26: 105–116.

    Article CAS PubMed  Google Scholar 

  67. Levitan, D.R. and Grosberg, R.K. 1993. The analysis of paternity and maternity in the marine hydrozoanHydractinia symbiolongicarpus using randomly amplified polymorphic DNA (RAPD) markers.Mol. Ecology2: 315–328.

    Article CAS  Google Scholar 

  68. Bassam, B.J., Caetano-Anollés, G., and Gresshoff, P.M. 1992. DNA amplification fingerprinting of bacteria.Appl. Microbiol. Biotechnol.38: 70–76.

    Article CAS PubMed  Google Scholar 

  69. Schierwater, B., and Ender, A. 1993. Different thermostable DNA polymerases may amplify different amplification patterns.Nucleic Acids Res.21: 4647–4648.

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Micheli, M.R., Bova, R., Pascale, E., and D'Ambrosio, E. 1994. Reproducible DNA fingerprinting with random amplified polymorphic DNA (RAPD) method.Nucleic Acids Res.22: 1921–1922.

    Article CAS PubMed PubMed Central  Google Scholar 

  71. McClelland, M. and Welsh, J. 1994. DNA fingerprinting by arbitrarily primed PCR.PCR Methods Applic.4: S59–S65

    Article CAS  Google Scholar 

  72. Riedy, M.R. Hamilton, W.J. III, and Aquadro, C.F. 1992. Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR.Nucleic Acids Res.20: 918

    Article CAS PubMed PubMed Central  Google Scholar 

  73. Scott, M.P., Haymes, K.M., and Williams, S.M. 1992. Parentage analysis using RAPD PCR.Nucleic Acids Res.20: 5493.

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Ayliffe, M.A., Lawrence, G.J., Ellis, J.G., and Pryor, A.J. 1994. Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands.Nucleic Acids Res.22: 1632–1636.

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Hadrys, H., Schierwater, B., Dellaporta, S.L., DeSalle, R., and Buss, L.W. 1993. Determination of paternities in dragonflies by random amplified polymorphic DNA fingerprinting.Mol. Ecol.2: 79–87.

    Article CAS PubMed  Google Scholar 

  76. Clark, A.G. and Lanigan, C.M.S. 1993. Prospects of estimating nucleotide divergence with RAPDs.Mol. Biol. Evol.10: 1096–1111.

    CAS PubMed  Google Scholar 

  77. Cushwa, W.T. and Medrano, J.F. 1996. Applications of the random amplified polymorphic DNA (RAPD) assay for genetic analysis of livestock species.Animal Biotechnol.7: 11–31.

    Article CAS  Google Scholar 

  78. Scott, M.P. and Williams, S.M. 1993. Comparative reproductive success of communally-breeding burying beetles as assessed by PCR with randomly amplified polymorphic DNA.Proc. Natl. Acad. Sci. USA90: 2242–2245.

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Sink, K.C. 1983. Taxonomy, pp. 3–9 inPetunia: Monographs on theoretical and applied genetics. Sink, K.G. (ed.). Springer Vertag, New York.

    Google Scholar 

  80. Ferguson, M.C. and Ottley, A.M. 1932. Studies onPetunia. III. A redescription and additional discussion of certain species ofPetunia .Am. J. Bot.19: 385–407.

    Article  Google Scholar 

  81. Cerny, T.A., Caetano-Anollés, G., Trigiano, R.N., and Starman, T.W. 1996. Molecular phylogeny and DNA amplification fingerprinting ofPetunia taxa.Theor. Appl. Genet.92: 1009–1016.

    Article CAS PubMed  Google Scholar 

  82. Sink, K.C. 1975. Inheritance of three genes for morphological characters inPetunia hybrida in crosses with fourPetunia species.Can. J. Genet. Cytol.17: 67–74.

    Article  Google Scholar 

  83. Natarella, N.J. and Sink, K.C. 1975. Electrophoretic analysis of proteins and peroxidses of selectedPetunia species and curtivars.Bot. Gaz.136: 20–26.

    Article CAS  Google Scholar 

  84. Craig, R. 1993. Intelectual property protection, pp. 389–104 inGeraniums IV: The grower's manual. White, J.W. (ed.). Ball Publishing, Geneva, IL.

    Google Scholar 

  85. Starman, T.W. and Abbitt, S. 1996. DNA amplification fingerprinting used to distinguish series of cutting, seedling and ivy leaf geranium.HortScience31: 565.

    Article  Google Scholar 

  86. Dowrick, G.J. and El-Bayoumi, A. 1966. The origin of new forms of the gardenChrysanthemum .Euphytica15: 32–38.

    Article  Google Scholar 

  87. Wolff, K., and Van Rijn, J. 1993. Rapid detection of genetic variability in chrysanthemumDendranthema grandiflora Tzvelev using random primers.Heredity71: 335–341.

    Article CAS PubMed  Google Scholar 

  88. Wolff, K., Zietkiewicz, E., and Hofstra, H. 1995. Identification of chysanthemum cultivars and stability of DNA fingerprint patterns.Theor. Appl. Genet.91: 439–447.

    Article CAS PubMed  Google Scholar 

  89. Wolff, K. 1996. RAPD analysis of sporting and chimerism in chrysanthemum.Euphytica89: 159–164.

    Article CAS  Google Scholar 

  90. Scott, C.M., Caetano-Anollés, G., and Trigiano, R.N. 1996. DNA amplification fingerprinting identifies closely related cultivars of chrysanthemum.J. Am. Soc. Hort. Sci. In press.

  91. Torres, A.M., Millén, T., and Gubero, J.I. 1993. Identifying rose cultivars using ransom amplified polymorphic DNA markers.HortScience28: 333–334.

    Article CAS  Google Scholar 

  92. Marsolais, J.V., Pringle, J.S., and White, B.N. 1993. Assessment of ransom amplified polymorphic DNA (RAPD) as genetic markers for determining the origin of interspecific Lilac hybrids.Taxon42: 531–537.

    Article  Google Scholar 

  93. Lee, W.B., Choi, S.Y., and Kim, Y.S. 1993. An application of random amplified porymorphic DNA (RAPD) to systematics of some species ofLilium in Korea.Kor. J. Plant Taxon.23: 35–42.

    Article  Google Scholar 

  94. Yamagishi, M. 1995. Detection of section-specific random amplified polymorphic DNA (RAPD) markers inLilium .Theor Appl. Genet.91: 830–835.

    Article CAS PubMed  Google Scholar 

  95. Cancilla, M.R., Powell, J.B., Hiller, A.J., and Davidson, B.E. 1992. Rapid genomic fingerprinting ofLactococcus lactis strains by arbitrarily primed polymerase chain reaction with32P and fluorescent labels.App. Environ. Microbiol.58: 1772–1775.

    Article CAS  Google Scholar 

  96. Caetano-Anollés, G., Callahan, L.M., Weaver, K.R., Williams, P., and Gresshoff, P.M. 1995. DNA amplification fingerprinting analysis of bermudagrass (Cynodon): genetic relationships between species and interspecific crosses.Theor. Appl. Genet.91: 228–235.

    Article PubMed  Google Scholar 

  97. Southern, E.M. 1996. DNA chips: analysing sequence by hybridization to oligonucleotides on a large scale.Trends Genet.12: 110–115.

    Article CAS PubMed  Google Scholar 

  98. Chetverin, A.B. and Kramer, F.R. 1994. Oligonucleotide arrays: new concepts and possibilities.Bio/Technology12: 1093–1099.

    Article CAS  Google Scholar 

  99. Strezoska, Z., Punesku, T., Radosavijevic, D., Labat, I., Drmanac, R., and Crkvenjakov, R. 1991. DNA sequencing by hybridization: 100 bases read by a non-gel-based method.Proc. Natl. Acad. Sci. USA88: 10089–10093.

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Drmanac, R., Drmanac, S., Strezoska, Z., Paunesku, I., Labat, I., Zeremski, M., et al. 1993. DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing.Science260: 1649–1652.

    Article CAS PubMed  Google Scholar 

  101. Maskos, U. and Southern, E.M. 1993. A novel method for the analysis of multiple sequence variants by hybridisation to oligonucleotides.Nucleic Acids Res.21: 2267–2268.

    Article CAS PubMed PubMed Central  Google Scholar 

  102. Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, I., et al. 1996. DNA analysis and diagnostics on oligonucleotide microchips.Proc. Natl. Acad. Sci. USA93: 4913–4918.

    Article CAS PubMed PubMed Central  Google Scholar 

  103. Nelson, S.F., McCusker, J.H., Sander, M.A., Kee, Y., Modrich, P., and Brown, P.O. 1993. Genomic mismatch scanning: a new approach to genetic linkage mapping.Nature Genetics4: 11–18.

    Article CAS PubMed  Google Scholar 

  104. Nikiforov, T.T., Rendle, R.R., Goelet, P., Rogers, Y., Kotewicz, M.L., Anderson, S., et al. 1994. Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms.Nucleic Acids Res.22: 167–4175.

    Article  Google Scholar 

  105. Caetano-Anollés, G. Methods for generation of sequence signatures from nucleic acids. US patent application 08/489,269.

  106. Salazar, N.M. and Caetano-Anollés, G. 1996. Nucleic acid scanning-by-hybridization of enterohemorrhagicEscherichia coli isolates using Oligonucleotide arrays.Nucleic Acids Res. In press.

  107. Whittam, I.S., Wolfe, M.L., Wachsmuth, I.K., Ørkov, F., Ørkov, I., and Wilson, R.A. 1993. Clonal relationships amongEscherichia coli strains that cause hemorrhage colitis and infantile diarrhea.Infect. Immun.61: 1619–1629.

    Article CAS PubMed PubMed Central  Google Scholar 

  108. Wang, G., Whittam, T.S., Berg, C.M., and Berg, D.E. 1993. RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme etectrophoresis for distinguishing related bacterial strains.Nucleic Acids Res.21: 5930–5933.

    Article CAS PubMed PubMed Central  Google Scholar 

  109. Beattie, K.L., Beattie, W.G., Meng, L., Turner, S.L., Coral-Vazquez, R., Smith, D.D., et al 1995. Advances in genosensor research.Clin. Chem.41: 700–706.

    Article CAS PubMed  Google Scholar 

  110. McClelland, M., Ralph, D., Cheng, R., and Welsh, J. 1994. Interactions among regulators of RNA abundance characterized using RNA fingerprinting by arbitrary primed PCR.Nucleic Acids Res.22: 4419–4431.

    Article CAS PubMed PubMed Central  Google Scholar 

  111. López-Nieto, C.E. and Nigam, S.K. 1996. Selective amplification of protein-coding regions of large sets of genes using statistically designed primer sets.Nature Biotechnology14: 857–861.

    Article PubMed  Google Scholar 

  112. Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. 1995. Serial analysis of gene expression.Science270: 484–487.

    Article CAS PubMed  Google Scholar 

  113. Lisitsyn, N., Lisitsyn, N., and Wigler, M. 1993. Cloning the differences between two complex genomes.Science259: 946–943.

    Article CAS PubMed  Google Scholar 

  114. Rosenberg, M., Przybylska, M., and Straus, D. 1994. RFLP substraction: a method for making libraries of polymorphic markers.Proc. Natl. Acad. Sci. USA91: 6113–6117.

    Article CAS PubMed PubMed Central  Google Scholar 

  115. Watson, J.D. 1993. Looking forward.Gene135: 309–315.

    Article CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Ornamental Horticulture and Landscape Design, University of Tennessee, Knoxville, TN, 37901-1071

    Gustavo Caetano-Anollés

Authors
  1. Gustavo Caetano-Anollés

Rights and permissions

About this article

Cite this article

Caetano-Anollés, G. Scanning of nucleic acids by in vitro amplification: New developments and applications.Nat Biotechnol14, 1668–1674 (1996). https://doi.org/10.1038/nbt1296-1668

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp