Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Analysis
  • Published:

Gene prioritization through genomic data fusion

Nature Biotechnologyvolume 24pages537–544 (2006)Cite this article

AnErratum to this article was published on 01 June 2006

Abstract

The identification of genes involved in health and disease remains a challenge. We describe a bioinformatics approach, together with a freely accessible, interactive and flexible software termed Endeavour, to prioritize candidate genes underlying biological processes or diseases, based on their similarity to known genes involved in these phenomena. Unlike previous approaches, ours generates distinct prioritizations for multiple heterogeneous data sources, which are then integrated, or fused, into a global ranking using order statistics. In addition, it offers the flexibility of including additional data sources. Validation of our approach revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. The approach described here offers an alternative integrative method for gene discovery.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of prioritization by Endeavour.
Figure 2: Cross-validation results.
Figure 3: Cross-validation results.
Figure 4:In vitro functional validation of Endeavour.
Figure 5: Functional validation of Endeavour in zebrafish.

Similar content being viewed by others

References

  1. Quackenbush, J. Genomics. Microarrays—guilt by association.Science302, 240–241 (2004).

    Article  Google Scholar 

  2. Kanehisa, M. & Bork, P. Bioinformatics in the post-sequence era.Nat. Genet.33 Suppl. 305–310 (2003).

    Article CAS  Google Scholar 

  3. Ball, C.A., Sherlock, G. & Brazma, A. Funding high-throughput data sharing.Nat. Biotechnol.22, 1179–1183 (2004).

    Article CAS  Google Scholar 

  4. Freudenberg, J. & Propping, P. A similarity-based method for genome-wide prediction of disease-relevant human genes.Bioinformatics18 Suppl. 2, S110–S115 (2002).

    Article  Google Scholar 

  5. Perez-Iratxeta, C., Bork, P. & Andrade, M.A. Association of genes to genetically inherited diseases using data mining.Nat. Genet.31, 316–319 (2002).

    Article CAS  Google Scholar 

  6. Turner, F.S., Clutterbuck, D.R. & Semple, C.A. POCUS: mining genomic sequence annotation to predict disease genes.Genome Biol.4, R75 (2003).

    Article  Google Scholar 

  7. Tiffin, N. et al. Integration of text- and data-mining using ontologies successfully selects disease gene candidates.Nucleic Acids Res.33, 1544–1552 (2005).

    Article CAS  Google Scholar 

  8. Adie, E.A., Adams, R.R., Evans, K.L., Porteous, D.J. & Pickard, B.S. Speeding disease gene discovery by sequence based candidate prioritization.BMC Bioinformatics6, 55 (2005).

    Article  Google Scholar 

  9. Lopez-Bigas, N. & Ouzounis, C.A. Genome-wide identification of genes likely to be involved in human genetic disease.Nucleic Acids Res.32, 3108–3114 (2004).

    Article CAS  Google Scholar 

  10. Kent, W.J. et al. Exploring relationships and mining data with the UCSC Gene Sorter.Genome Res.15, 737–741 (2005).

    Article CAS  Google Scholar 

  11. Altermann, E. & Klaenhammer, T.R. PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.BMC Genomics6, 60 (2005).

    Article  Google Scholar 

  12. Aerts, S. et al. TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis.Nucleic Acids Res.33, W393–W396 (2005).

    Article CAS  Google Scholar 

  13. Aerts, S., Van Loo, P., Thijs, G., Moreau, Y. & De Moor, B. Computational detection of cis-regulatory modules.Bioinformatics19 (Suppl 2), II5–II14 (2003).

    Article  Google Scholar 

  14. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation.Proc. Natl. Acad. Sci. USA96, 2907–2912 (1999).

    Article CAS  Google Scholar 

  15. Stegmaier, K. et al. Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation.Nat. Genet.36, 257–263 (2004).

    Article CAS  Google Scholar 

  16. Pixley, F.J. et al. BCL6 suppresses RhoA activity to alter macrophage morphology and motility.J. Cell Sci.118, 1873–1883 (2005).

    Article CAS  Google Scholar 

  17. Galimi, F. et al. Hepatocyte growth factor is a regulator of monocyte-macrophage function.J. Immunol.166, 1241–1247 (2001).

    Article CAS  Google Scholar 

  18. Brown, N.J. et al. Fas death receptor signaling represses monocyte numbers and macrophage activation in vivo.J. Immunol.173, 7584–7593 (2004).

    Article CAS  Google Scholar 

  19. Scambler, P.J. The 22q11 deletion syndromes.Hum. Mol. Genet.9, 2421–2426 (2000).

    Article CAS  Google Scholar 

  20. Baldini, A. Dissecting contiguous gene defects: TBX1.Curr. Opin. Genet. Dev.15, 279–284 (2005).

    Article CAS  Google Scholar 

  21. Jerome, L.A. & Papaioannou, V.E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1.Nat. Genet.27, 286–291 (2001).

    Article CAS  Google Scholar 

  22. Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome.Cell104, 619–629 (2001).

    Article CAS  Google Scholar 

  23. Lindsay, E.A. et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice.Nature410, 97–101 (2001).

    Article CAS  Google Scholar 

  24. Piotrowski, T. et al. The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans.Development130, 5043–5052 (2003).

    Article CAS  Google Scholar 

  25. Rauch, A. et al. A novel 22q11.2 microdeletion in DiGeorge syndrome.Am. J. Hum. Genet.64, 659–666 (1999).

    Article CAS  Google Scholar 

  26. Graham, A. The development and evolution of the pharyngeal arches.J. Anat.199, 133–141 (2001).

    Article CAS  Google Scholar 

  27. Stalmans, I. et al. VEGF: a modifier of the del22q11 (DiGeorge) syndrome?Nat. Med.9, 173–182 (2003).

    Article CAS  Google Scholar 

  28. Glenisson, P. et al. TXTGate: profiling gene groups with text-based information.Genome Biol.5, R43 (2004).

    Article  Google Scholar 

  29. Bader, G.D., Betel, D. & Hogue, C.W. BIND: the Biomolecular Interaction Network Database.Nucleic Acids Res.31, 248–250 (2003).

    Article CAS  Google Scholar 

  30. Aerts, S., Van Loo, P., Moreau, Y. & De Moor, B. A genetic algorithm for the detection of new cis-regulatory modules in sets of coregulated genes.Bioinformatics20, 1974–1976 (2004).

    Article CAS  Google Scholar 

  31. Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules.Science302, 249–255 (2003).

    Article CAS  Google Scholar 

  32. Westerfield, M.The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish, (University of Oregon Press, Eugene, Oregon, 1994).

    Google Scholar 

  33. Kimmel, C.B. et al. The shaping of pharyngeal cartilages during early development of the zebrafish.Dev. Biol.203, 245–263 (1998).

    Article CAS  Google Scholar 

  34. Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.Cell119, 19–31 (2004).

    Article CAS  Google Scholar 

  35. Robinson, S.W. et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects.Am. J. Hum. Genet.72, 1047–1052 (2003).

    Article CAS  Google Scholar 

  36. Hayashi, T. et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy.Biochem. Biophys. Res. Commun.313, 178–184 (2004).

    Article CAS  Google Scholar 

  37. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology.Neuron44, 601–607 (2004).

    Article CAS  Google Scholar 

  38. Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease.Nat. Genet.37, 289–294 (2005).

    Article  Google Scholar 

  39. Munch, C. et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS.Neurology63, 724–726 (2004).

    Article CAS  Google Scholar 

  40. Tian, X.L. et al. Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome.Nature427, 640–645 (2004).

    Article CAS  Google Scholar 

  41. Bienengraeber, M. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating.Nat. Genet.36, 382–387 (2004).

    Article CAS  Google Scholar 

  42. Windpassinger, C. et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome.Nat. Genet.36, 271–276 (2004).

    Article CAS  Google Scholar 

  43. Tonkin, E.T., Wang, T.J., Lisgo, S., Bamshad, M.J. & Strachan, T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome.Nat. Genet.36, 636–641 (2004).

    Article CAS  Google Scholar 

  44. Krantz, I.D. et al. Exclusion of linkage to the CDL1 gene region on chromosome 3q26.3 in some familial cases of Cornelia de Lange syndrome.Am. J. Med. Genet.101, 120–129 (2001).

    Article CAS  Google Scholar 

  45. Wang, X. et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility.Nat. Genet.37, 365–372 (2005).

    Article CAS  Google Scholar 

  46. Peltekova, V.D. et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease.Nat. Genet.36, 471–475 (2004).

    Article CAS  Google Scholar 

  47. Aharon-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews.N. Engl. J. Med.351, 1972–1977 (2004).

    Article CAS  Google Scholar 

  48. Begovich, A.B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis.Am. J. Hum. Genet.75, 330–337 (2004).

    Article CAS  Google Scholar 

  49. Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke.Nat. Genet.36, 233–239 (2004).

    Article CAS  Google Scholar 

  50. Bertram, L. et al. Family-based association between Alzheimer's disease and variants in UBQLN1.N. Engl. J. Med.352, 884–894 (2005).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all groups and consortia that made their data freely available: Ensembl, NCBI (EntrezGene and Medline), Gene Ontology, BIND, KEGG, Atlas, InterPro, BioBase, the Disease Probabilities from Lopez-Bigas and Ouzounis9 and the Prospectr scores from Euan Adie8. Ouzounis8 and the Prospectr scores from Euan Adie9. We also thank the following people for their help in particular areas: Robert Vlietinck with the manuscript, Patrick Glenisson with text mining, Joke Allemeersch and Gert Thijs with the order statistics and Camilla Esguerra with the zebrafish experiments. S.A., D.L. and P.V.L. are sponsored by the Research Foundation Flanders (FWO). This work is supported by Flanders Institute for Biotechnology (VIB), Instituut voor de aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen (IWT) (STWW-00162), Research Council KULeuven (GOA-Ambiorics, IDO genetic networks), FWO (G.0229.03 and G.0413.03), IUAP V-22, K.U.L. Excellentiefinanciering CoE SymBioSys (EF/05/007), EU NoE Biopattern and EU EST BIOPTRAIN to Y.M., and by the FWO (G.0405.06), GOA/2006/11 and GOA/2001/09, Squibb and EULSHB-CT-2004-503573 to P.C.

Author information

Author notes
  1. Stein Aerts, Diether Lambrechts, Sunit Maity, Peter Van Loo and Bert Coessens: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Human Genetics, Laboratory of Neurogenetics, Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, Herestraat 49, bus 602, Leuven, 3000, Belgium

    Stein Aerts & Bassem Hassan

  2. The Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, Herestraat 49, bus 602, Leuven, 3000, Belgium

    Diether Lambrechts, Sunit Maity, Frederik De Smet & Peter Carmeliet

  3. Department of Human Genetics, Human Genome Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, Herestraat 49, bus 602, Leuven, 3000, Belgium

    Peter Van Loo & Peter Marynen

  4. Department of Electrical Engineering (ESAT-SCD), Bioinformatics Group, University of Leuven, Belgium

    Stein Aerts, Peter Van Loo, Bert Coessens, Leon-Charles Tranchevent, Bart De Moor & Yves Moreau

Authors
  1. Stein Aerts

    You can also search for this author inPubMed Google Scholar

  2. Diether Lambrechts

    You can also search for this author inPubMed Google Scholar

  3. Sunit Maity

    You can also search for this author inPubMed Google Scholar

  4. Peter Van Loo

    You can also search for this author inPubMed Google Scholar

  5. Bert Coessens

    You can also search for this author inPubMed Google Scholar

  6. Frederik De Smet

    You can also search for this author inPubMed Google Scholar

  7. Leon-Charles Tranchevent

    You can also search for this author inPubMed Google Scholar

  8. Bart De Moor

    You can also search for this author inPubMed Google Scholar

  9. Peter Marynen

    You can also search for this author inPubMed Google Scholar

  10. Bassem Hassan

    You can also search for this author inPubMed Google Scholar

  11. Peter Carmeliet

    You can also search for this author inPubMed Google Scholar

  12. Yves Moreau

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toStein Aerts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Variability of the performance of endeavour, evaluated for each data source. (PDF 44 kb)

Supplementary Fig. 2

Pairwise dependency of the data sources. (PDF 55 kb)

Supplementary Fig. 3

Endeavor is not biased to well-characterized genes. (PDF 318 kb)

Supplementary Table 1

Selection criteria and training sets for the 10 mono and 6 polygenic diseases. (PDF 75 kb)

Supplementary Table 2

Prioritization of 1048 test genes located on chromosome 3 using training genes of congenital heart defects (CHD), arrythmias (AR), and cardiomyopathies (CM). (PDF 93 kb)

Rights and permissions

About this article

Cite this article

Aerts, S., Lambrechts, D., Maity, S.et al. Gene prioritization through genomic data fusion.Nat Biotechnol24, 537–544 (2006). https://doi.org/10.1038/nbt1203

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp