- Article
- Published:
The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens
- Soon Ho Hong1 na1,
- Jin Sik Kim1 na1,
- Sang Yup Lee1,
- Yong Ho In2,5,
- Sun Shim Choi2,
- Jeong-Keun Rih3,
- Chang Hoon Kim3,
- Haeyoung Jeong3,4,
- Cheol Goo Hur3 &
- …
- Jae Jong Kim4
Nature Biotechnologyvolume 22, pages1275–1281 (2004)Cite this article
6184Accesses
178Citations
13Altmetric
ACorrigendum to this article was published on 01 December 2004
Abstract
The rumen represents the first section of a ruminant animal's stomach, where feed is collected and mixed with microorganisms for initial digestion. The major gas produced in the rumen is CO2 (65.5 mol%), yet the metabolic characteristics of capnophilic (CO2-loving) microorganisms are not well understood. Here we report the 2,314,078 base pair genome sequence ofMannheimia succiniciproducens MBEL55E, a recently isolated capnophilic Gram-negative bacterium from bovine rumen, and analyze its genome contents and metabolic characteristics. The metabolism ofM. succiniciproducens was found to be well adapted to the oxygen-free rumen by using fumarate as a major electron acceptor. Genome-scale metabolic flux analysis indicated that CO2 is important for the carboxylation of phosphoenolpyruvate to oxaloacetate, which is converted to succinic acid by the reductive tricarboxylic acid cycle and menaquinone systems. This characteristic metabolism allows highly efficient production of succinic acid, an important four-carbon industrial chemical.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
References
Sniffen, C.J. & Herdt, H.H.The Veterinary Clinics of North America: Food Animal Practice (W.B. Saunders Company, Pennsylvania, USA, 1991).
Lee, P.C., Lee, S.Y., Hong, S.H. & Chang, H.N. Isolation and characterization of a new succinic acid-producing bacterium,Mannheimia succiniciproducens MBEL55E, from bovine rumen.Appl. Microbiol. Biotechnol.58, 663–668 (2002).
Lee, S.Y., Hong, S.H., Lee, S.H. & Park, S.J. Fermentative production of chemicals that can be used for polymer synthesis.Macromol. Biosci.4, 157–164 (2004).
Salzberg, S.L., Salzberg, A.J., Kerlavage, A.R. & Tomb, J.F. Skewed oligomers and origins of replication.Gene217, 57–67 (1998).
Blattner, F.R. et al. The complete genome sequence ofEscherichia coli K–12.Science277, 1453–1462 (1997).
Kunst, F. et al. The complete genome sequence of the gram-positive bacteriumBacillus subtilis.Nature390, 249–256 (1997).
May, B.J. et al. Complete genomic sequence ofPasteurella multocida, Pm70.Proc. Natl. Acad. Sci. USA98, 3460–3465 (2001).
Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at GenomeNet.Nucleic Acids Res.30, 42–46 (2002).
Karp, P.D. Pathway databases: a case study in computational symbolic theories.Science293, 2040–2044 (2001).
Fleischmann, R.D. et al. Whole–genome random sequencing and assembly ofHaemophilus influenzae Rd.Science269, 496–512 (1995).
Angen, Ø., Mutters, R., Caugant, D.A., Olsen, J.E. & Bisgaard, M. Taxonomic relationships of the [Pasteurella]haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal ofMannheimia haemolytica gen. nov., comb. nov.,Mannheimia granulomatis comb. nov.,Mannheimia glucosida sp. nov.,Mannheimia ruminalis sp. nov. andMannheimia varigena sp. nov.Int. J. Syst. Bacteriol.49, 67–86 (1999).
Osawa, R. et al.Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium.Syst. Appl. Microbiol.18, 368–373 (1995).
Guettler, M.V., Rumler, D. & Jain, M.K.Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen.Int. J. Syst. Bacteriol.49, 207–216 (1999).
Church, D.C.The Ruminant Animal: Digestive Physiology and Nutrition (Prentice Hall, New Jersey, USA, 1988).
Ibarra, R.U., Edwards, J.S. & Palsson, B.O.Escherichia coli K-12 undergoes adaptive evolution to achievein silco predicted optimal growth.Nature420, 186–189 (2002).
Edwards, J.S., Ibarra, R.U. & Palsso, B.O.In silico predictions ofEscherichia coli metabolic capabilities are consistent with experimental data.Nat. Biotechnol.19, 125–130 (2001).
Price, N.D., Papin, J.A., Schilling, C.H. & Palsson, B.O. Genome-scale microbialin silico models: the constraints-based approach.Trends Biotechnol.21, 162–169 (2003).
Favello, A., Hillier, L. & Wilson, R.K. Genomic DNA sequencing methods.Methods Cell Biol.48, 551–569 (1995).
Sambrook, J., Fritsch, E.F. & Maniatis, T.Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).
Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing.Genome Res.8, 195–202 (1998).
Delcher, A.L., Harmon, D., Kasif, S., White, O. & Salzberg, S.L. Improved microbial gene identification with GLIMMER.Nucleic Acids Res.27, 4636–4641 (1999).
Rutherford, K. et al. Artemis: sequence visualization and annotation.Bioinformatics16, 944–945 (2000).
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool.J. Mol. Biol.215, 403–410 (1990).
Eddy, S.R. Profile hidden Markov models.Bioinformatics14, 755–763 (1998).
Tatusov, R.L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes.Nucleic Acids Res.29, 22–28 (2001).
Lowe, T.M. & Eddy, S.R. tRNAscan–SE: a program for improved detection of transfer RNA genes in genomic sequence.Nucleic Acids Res.25, 955–964 (1997).
Varma, A. & Palsson, B.O. Metabolic flux balancing—basic concepts, scientific and practical use.Bio/Technology12, 994–998 (1994).
Neidhardt, F.C. & Umbarger, H.E. inEscherichia coli and Salmonella: Cellular and Molecular Biology, edn. 2 (ed. Neidhardt, F.C.) 13–16 (ASM Press, Washington, DC, 1996).
Lee, D.Y., Yun, H., Park, S. & Lee, S.Y. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.Bioinformatics19, 2144–2146 (2003).
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns.Proc. Natl. Acad. Sci. USA95, 14863–14868 (1998).
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.72, 248–254 (1976).
Burton, K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid.Biochem. J.62, 314–323 (1956).
Acknowledgements
We thank Sung Ho Goh and Heyung Ju Shin at the KRIBB, Young Ho Moon, Kang Ryul Choi, Sun Ho Cha, Sung Soo Kim, Soo Hyun Jeong, Eun Mi Chung and Sun Rye Jung at GenoTech, and Jinyoung Park, Sujin Chae and Hee Sun Chung at Bioinfomatix for their contributions during genome sequencing and annotation. This work was supported by the Korean Systems Biology Research Program (M10309020000-03B5002-00000) of the Ministry of Science and Technology (MOST), Bioinfomatix and by the Brain Korea 21 Project. Further support through the LG Chem Chair Professorship and IBM SUR program is appreciated.
Author information
Soon Ho Hong and Jin Sik Kim: These authors contributed equally to this work.
Authors and Affiliations
Department of Chemical and Biomolecular Engineering, Department of BioSystems, Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology, 373–1 Guseong-dong, Yuseong-gu, Daejeon, 305–701, Republic of Korea
Soon Ho Hong, Jin Sik Kim & Sang Yup Lee
Bioinfomatix, Inc., The fifth floor, Nam Chang Bldg., 748–162 Yeoksam-dong, Gangnam-gu, Seoul, 135–925, Republic of Korea
Yong Ho In & Sun Shim Choi
Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oun-dong, Yuseong-gu, Daejeon, 305–333, Republic of Korea
Jeong-Keun Rih, Chang Hoon Kim, Haeyoung Jeong & Cheol Goo Hur
GenoTech Corp., 461–6 Jeonmin-dong, Yuseong-gu, Daejeon, 305–390, Republic of Korea
Haeyoung Jeong & Jae Jong Kim
IDRTech Inc., 461–6 Jeonmin-dong, Yuseong-gu, Daejeon, 305–390, Republic of Korea
Yong Ho In
- Soon Ho Hong
Search author on:PubMed Google Scholar
- Jin Sik Kim
Search author on:PubMed Google Scholar
- Sang Yup Lee
Search author on:PubMed Google Scholar
- Yong Ho In
Search author on:PubMed Google Scholar
- Sun Shim Choi
Search author on:PubMed Google Scholar
- Jeong-Keun Rih
Search author on:PubMed Google Scholar
- Chang Hoon Kim
Search author on:PubMed Google Scholar
- Haeyoung Jeong
Search author on:PubMed Google Scholar
- Cheol Goo Hur
Search author on:PubMed Google Scholar
- Jae Jong Kim
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toSang Yup Lee.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Fig. 1
M. succiniciproducens MBEL55E genome characteristics. (PDF 956 kb)
Supplementary Fig. 2
A schematic diagram of the entire metabolic network. (PDF 170 kb)
Supplementary Fig. 3
Comparative analysis of the respiratory systems in various microorganisms. (PDF 150 kb)
Supplementary Fig. 4
Time profiles of batch fermentation under various conditions. (PDF 38 kb)
Supplementary Table 1
List ofM. succiniciproducens MBEL55E genes. (PDF 214 kb)
Supplementary Table 2
Functional analysis ofM. succiniciproducens MBEL55E genome. (PDF 52 kb)
Supplementary Table 3
Thein silico metabolic network. (PDF 98 kb)
Supplementary Table 4
Utilization of various carbon sources. (PDF 21 kb)
Rights and permissions
About this article
Cite this article
Hong, S., Kim, J., Lee, S.et al. The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens.Nat Biotechnol22, 1275–1281 (2004). https://doi.org/10.1038/nbt1010
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase
- Jung Ho Ahn
- Hogyun Seo
- Sang Yup Lee
Nature Communications (2020)
Finding MEMo: minimum sets of elementary flux modes
- Annika Röhl
- Alexander Bockmayr
Journal of Mathematical Biology (2019)
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes
- Wubliker Dessie
- Fengxue Xin
- Min Jiang
Applied Microbiology and Biotechnology (2018)
Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources
- Abdullah Amru Indera Luthfi
- Shareena Fairuz Abdul Manaf
- Jamaliah Md Jahim
Applied Microbiology and Biotechnology (2017)
Engineered biosynthesis of biodegradable polymers
- Pooja Jambunathan
- Kechun Zhang
Journal of Industrial Microbiology and Biotechnology (2016)


