- Article
- Published:
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy
- Yongxin Zhao1 na1,
- Octavian Bucur2,3,4,5 na1,
- Humayun Irshad2,3,5,
- Fei Chen1,6,7,
- Astrid Weins8,9,
- Andreea L Stancu2,5,
- Eun-Young Oh2,
- Marcello DiStasio2,
- Vanda Torous2,
- Benjamin Glass2,
- Isaac E Stillman2,
- Stuart J Schnitt2,
- Andrew H Beck2,3,5 &
- …
- Edward S Boyden1,6,7,10
Nature Biotechnologyvolume 35, pages757–764 (2017)Cite this article
21kAccesses
231Citations
190Altmetric
Abstract
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNAin situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy.Annu. Rev. Biochem.78, 993–1016 (2009).
Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells.Cell143, 1047–1058 (2010).
Hell, S.W. Far-field optical nanoscopy. In2010 23rd Annual Meeting of the IEEE Photonics Society (ed. Novak, D.) 3–4 (IEEE, 2010).
Hell, S.W. Toward fluorescence nanoscopy.Nat. Biotechnol.21, 1347–1355 (2003).
Phelps, P.E., Houser, C.R. & Vaughn, J.E. Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses.J. Comp. Neurol.238, 286–307 (1985).
Nixon, R.A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study.J. Neuropathol. Exp. Neurol.64, 113–122 (2005).
Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking.Science296, 503–507 (2002).
Chen, F., Tillberg, P.W. & Boyden, E.S. Expansion microscopy.Science347, 543–548 (2015).
Tillberg, P.W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies.Nat. Biotechnol.34, 987–992 (2016).
Waldman, M. et al. Adult minimal-change disease: clinical characteristics, treatment, and outcomes.Clin. J. Am. Soc. Nephrol.2, 445–453 (2007).
Elmore, J.G. et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens.J. Am. Med. Assoc.313, 1122–1132 (2015).
Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy.Nat. Methods13, 679–684 (2016).
Leproust, E.M., Chen, S. & Ruvolo, M. Synthesis of long fish probes. US patent 20140256575 A1 (2014).
Schnell, S.A., Staines, W.A. & Wessendorf, M.W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue.J. Histochem. Cytochem.47, 719–730 (1999).
Viegas, M.S., Martins, T.C., Seco, F. & do Carmo, A. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues.Eur. J. Histochem.51, 59–66 (2007).
Neumann, M. & Gabel, D. Simple method for reduction of autofluorescence in fluorescence microscopy.J. Histochem. Cytochem.50, 437–439 (2002).
Mendez, M.G., Kojima, S. & Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition.FASEB J.24, 1838–1851 (2010).
Maier, J., Traenkle, B. & Rothbauer, U. Real-time analysis of epithelial–mesenchymal transition using fluorescent single-domain antibodies.Sci. Rep.5, 13402 (2015).
Pease, D.C. Fine structures of the kidney seen by electron microscopy.J. Histochem.Cytochem.3, 295–308 (1955).
Ranganathan, S. Pathology of podocytopathies causing nephrotic syndrome in children.Front Pediatr.4, 32 (2016).
Hirose, T. et al. An essential role of the universal polarity protein, aPKClambda, on the maintenance of podocyte slit diaphragms.PLoS One4, e4194 (2009).
Dandapani, S.V. et al. Alpha-actinin-4 is required for normal podocyte adhesion.J. Biol. Chem.282, 467–477 (2007).
Mundel, P. et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes.J. Cell Biol.139, 193–204 (1997).
Sim, J. & Wright, C.C. The kappa statistic in reliability studies: use, interpretation, and sample size requirements.Phys. Ther.85, 257–268 (2005).
Degnim, A.C. et al. Gene signature model for breast cancer risk prediction for women with sclerosing adenosis.Breast Cancer Res. Treat.152, 687–694 (2015).
Allison, K.H. et al. Understanding diagnostic variability in breast pathology: lessons learned from an expert consensus review panel.Histopathology65, 240–251 (2014).
Dong, F. et al. Computational pathology to discriminate benign from malignant intraductal proliferations of the breast.PLoS One9, e114885 (2014).
Chozinski, T.J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins.Nat. Methods13, 485–488 (2016).
Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues.Nat. Biotechnol.34, 973–981 (2016).
Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling.Nat. Methods9, 743–748 (2012).
Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cellin situ RNA profiling by sequential hybridization.Nat. Methods11, 360–361 (2014).
Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.Science348, aaa6090 (2015).
Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT.Nat. Methods11, 313–318 (2014).
Germroth, P.G., Gourdie, R.G. & Thompson, R.P. Confocal microscopy of thick sections from acrylamide gel embedded embryos.Microsc. Res. Tech.30, 513–520 (1995).
Irshad, H., Veillard, A., Roux, L. & Racoceanu, D. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential.IEEE Rev. Biomed. Eng.7, 97–114 (2014).
Lowe, D.G. Distinctive image features from scale-invariant keypoints.Int. J. Comput. Vis.60, 91–110 (2004).
Vedaldi, A. & Fulkerson, B. Vlfeat - an open and portable library of computer vision algorithms. InProc. 18th ACM International Conference on Multimedia (eds. Bimbo, A.D. et al.) 1469–1472 (ACM Press, 2010).
Sternberg, S.R. Biomedical image processing.Computer16, 22–34 (1983).
Zuiderveld, K. Contrast limited adaptive histogram equalization. InGraphics gems IV (Ed. Heckbert, P.S.), 474–485 (AP Professional, 1994).
Fan, J. Notes on Poisson distribution-based minimum error thresholding.Pattern Recognit. Lett.19, 425–431 (1998).
Al-Kofahi, Y., Lassoued, W., Lee, W. & Roysam, B. Improved automatic detection and segmentation of cell nuclei in histopathology images.IEEE Trans. Biomed. Eng.57, 841–852 (2010).
Haralick, R.M., Shanmugam, K. & Dinstein, I. Textural features for image classification.IEEE Trans. Syst. Man Cybern.3, 610–621 (1973).
Galloway, M.M. Texture analysis using gray level run lengths.Comput. Graph. Image Process.4, 172–179 (1975).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent.J. Stat. Softw.33, 1–22 (2010).
Tibshirani, R. Regression shrinkage and selection via the lasso.J. R. Stat. Soc. B58, 267–288 (1996).
Dormann, C.F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.Ecography (Cop.)36, 27–46 (2013).
Breiman, L. Random forests.Mach. Learn.45, 5–32 (2001).
John, G.H. & Langley, P. Estimating continuous distributions in Bayesian classifiers. InProc. of the 11th Conference on Uncertainty in Artificial Intelligence (eds. Besnard, P. & Hanks, S.) 338–345 (Morgan Kaufmann Publishers, 1995).
Acknowledgements
For funding, E.S.B. acknowledges the MIT Media Lab; the Open Philanthropy project; the HHMI-Simons Faculty Scholars Program; the US Army Research Laboratory and the US Army Research Office under contract/grant number W911NF1510548; the MIT Brain and Cognitive Sciences Department; the New York Stem Cell Foundation-Robertson Investigator Award; NIH Transformative Award 1R01GM104948; NIH Director's Pioneer Award 1DP1NS087724; NIH 1R01EY023173; NIH 1U01MH106011; NIH 1R01MH110932; and the MIT McGovern Institute MINT program. A.H.B. acknowledges support from Harvard Catalyst, the Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health Award UL1 TR001102), and financial contributions from Harvard University and its affiliated academic healthcare centers. A.H.B. and O.B. also acknowledge support from the Ludwig Center at Harvard and the Ludwig's members J. Brugge and J. Staunton. O.B. acknowledges the Lady Tata Memorial Trust, London. F.C. acknowledges the NSF Fellowship and Poitras Fellowship.
Author information
Yongxin Zhao and Octavian Bucur: These authors corresponded equally to this work.
Authors and Affiliations
MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Yongxin Zhao, Fei Chen & Edward S Boyden
Department of Pathology and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
Octavian Bucur, Humayun Irshad, Andreea L Stancu, Eun-Young Oh, Marcello DiStasio, Vanda Torous, Benjamin Glass, Isaac E Stillman, Stuart J Schnitt & Andrew H Beck
Ludwig Center at Harvard Medical School, Boston, Massachusetts, USA
Octavian Bucur, Humayun Irshad & Andrew H Beck
Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
Octavian Bucur
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
Octavian Bucur, Humayun Irshad, Andreea L Stancu & Andrew H Beck
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Fei Chen & Edward S Boyden
McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Fei Chen & Edward S Boyden
Department of Pathology, Brigham and Women′s Hospital, Harvard Medical School, Boston, Massachusetts, USA
Astrid Weins
Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Astrid Weins
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,
Edward S Boyden
- Yongxin Zhao
Search author on:PubMed Google Scholar
- Octavian Bucur
Search author on:PubMed Google Scholar
- Humayun Irshad
Search author on:PubMed Google Scholar
- Fei Chen
Search author on:PubMed Google Scholar
- Astrid Weins
Search author on:PubMed Google Scholar
- Andreea L Stancu
Search author on:PubMed Google Scholar
- Eun-Young Oh
Search author on:PubMed Google Scholar
- Marcello DiStasio
Search author on:PubMed Google Scholar
- Vanda Torous
Search author on:PubMed Google Scholar
- Benjamin Glass
Search author on:PubMed Google Scholar
- Isaac E Stillman
Search author on:PubMed Google Scholar
- Stuart J Schnitt
Search author on:PubMed Google Scholar
- Andrew H Beck
Search author on:PubMed Google Scholar
- Edward S Boyden
Search author on:PubMed Google Scholar
Contributions
Y.Z., O.B., A.H.B. and E.S.B. all contributed key ideas, designed experiments and analyzed data. F.C. and Y.Z. performed SR-SIM experiments on tissues. Y.Z. and O.B. designed and acquired ExPath data for all tissues. H.I., O.B. and Y.Z. analyzed ExPath data for breast benign neoplasia experiments. H.I. developed the computational image analysis framework for the breast benign neoplasia analysis. A.L.S. performed the expert annotation (ground truth) for the image analysis framework. E.-Y.O., S.J.S. and B.G. performed the selection and annotation of the breast lesions. A.W., M.D., V.T. and I.E.S. participated in the single blinded test for the ExPath kidney experiment. All authors contributed to the writing of the manuscript. A.H.B. and E.S.B. supervised the project.
Corresponding authors
Correspondence toAndrew H Beck orEdward S Boyden.
Ethics declarations
Competing interests
Y.Z., O.B., H.I., A.H.B. and E.S.B. have filed for patent protection on a subset of the technologies here described (US provisional application no. 62/299,754). E.S.B. helped cofound a company to help disseminate expansion microscopy to the community. A.H.B. helped cofound a company to develop artificial intelligence technology for pathology.
Integrated supplementary information
Supplementary Figure 2 Conditions that affect the successful expansion of human tissues.
(A) Images of human skin samples, both taken by a conventional camera (i, iv) and via fluorescence microscopy (ii-iii, v-vi) when stained with DAPI (gray) and antibodies against vimentin (green) and smooth muscle actin (gene name, ACTA2) (magenta). The samples were digested with 8 units/mL proteinase K solution containing 25 mM Tris (pH 8), 1 mM EDTA, 0.25% Triton X-100, and 0.4 M NaCl at 60°C for 0.5 hour (i-iii) or 2 hours (iv-vi). (i andiv) Conventional camera (i.e., non-fluorescent) photographs of human skin-hydrogel hybrid samples in PBS (~2x expansion), after digestion for 0.5 hour (i) or 2 hours (iv). (ii) Widefield fluorescent image from the sample of (i) pre-digestion. (iii) Post-expansion wide-field fluorescent image of the sample of (ii), with a dashed orange box highlighting regions with autofluorescence in the DAPI channel and distorted vimentin networks post-expansion. (v) As in (ii), for the sample in (iv) pre-digestion. (vi) As in (iii) for the sample of (v) with a dashed orange box highlighting regions with autofluorescence in the DAPI channel. (B) As in (A), except that the samples were digested with 8 units/mL proteinase K solution containing 25 mM Tris (pH 8), 25 mM EDTA, 0.25% Triton X-100, and 0.4 M NaCl, at 60°C for 0.5 hour (i-iii) or 2 hours (iv-vi). Note that inBi andBiv the samples look quite transparent, due to the heavy digestion. (C) Photographs of human liver samples digested with a 1 mM EDTA-based solution – specifically, 8 units/mL proteinase K solution containing 25 mM Tris (pH 8), 1 mM EDTA, 0.25% Triton X-100, and 0.4 M NaCl at 60°C for 0.5 hour (left) or 2 hours (right). (D) Photographs of human liver samples digested with a 25 mM EDTA-based solution – specifically, 8 units/mL proteinase K solution containing 25 mM Tris (pH 8), 25 mM EDTA, 0.25% Triton X-100, and 0.4 M NaCl at 60°C for 0.5 hours (left) or 2 hours (right). Note that the samples ofD are significantly more transparent than those ofC. (E) Widefield fluorescent image of a human liver sample stained with DAPI (gray) and an antibody against smooth muscle actin (gene name, ACTA2) (magenta) prior to the ExPath process. (F) Post-expansion wide-field fluorescent image of the sample ofE, digested with a 1 mM EDTA-based solution for 1 hour. White dashed line outlines an out-of-focus region caused by distortion. (G) Wide-field fluorescent image of a human liver sample stained with DAPI (gray) and an antibody against smooth muscle actin (gene name, ACTA2) (magenta) prior to the ExPath process. (H) Post-expansion wide-field fluorescent image of the same sample as inG. The sample had been digested with a 25 mM EDTA-based solution for 0.5 hour. (I) Post-expansion confocal image of human lymph node tissue with invaded breast cancer stained with DAPI (blue) and an antibody against vimentin (green), and treated with a 1 mM EDTA-based solution for 3 hours. (J) Post-expansion confocal image of a different sample from the same tissue used inI, treated with a 25 mM EDTA-based solution. (K) Post-expansion confocal image of normal human kidney tissue fixed with acetone, stained with an antibody against collagen IV (magenta), and treated with 0.1 mg/ml Acryloyl-X prior toin situ polymerization. Cracks are indicated by white arrows. (L) Post-expansion confocal image of a different sample from the same tissue used inK, treated with 0.03 mg/ml Acryloyl-X prior toin situ polymerization. Scale bars (yellow scale bars indicate post-expansion images:Aii andiii, 9.2 μm (physical size iniii: 40 μm, expansion factor: 4.33).Av andvi, 9.4 μm (physical size invi: 40 μm, expansion factor: 4.28).Bii andiii, 9 μm (physical size iniii: 40 μm, expansion factor: 4.41).Bv andvi, 8.9 μm (physical size invi: 40 μm, expansion factor: 4.51).E andF, 119 μm (physical size inF: 500 μm, expansion factor: 4.22);G andH, 109 μm (physical size inH: 500 μm, expansion factor: 4.58). (I-L) 40 μm, physical size.
Supplementary Figure 3 Distortion evaluation of post-expansion HeLa cells processed by 25 mM EDTA-assisted proteinase K digestion.
(A) Super-resolution structured illumination microscopy (SR-SIM) image of a HeLa cell stained with DAPI and an antibody against α-tubulin. Blue, DAPI; green, α-tubulin. (B) Post-expansion image of the same sample acquired with a spinning disk confocal microscope. (C andD) Root mean square (RMS) length measurement error as a function of measurement length for ExPath vs SIM images (blue solid line, mean of DAPI channel; green solid line, mean of α-tubulin channel; shaded area, standard deviation; n = 3 samples from separate cultures). Scale bars: (A) 4 μm, (B) 4 μm (for yellow scale bar, physical size post-expansion, 19.5 μm; expansion factor: 4.89).
Supplementary Figure 4 Fluorescence of unstained tissue vs. H&E stained tissue.
(A) Brightfield image of unstained formalin-preserved human lymph node tissue with invaded breast cancer. (B-E) Widefield fluorescent images of the same sample as inA in four fluorescent channels (listed below). (F) Bright field image of tissue from the same block as inA, stained with H&E. (G-J) Widefield fluorescent images of the sample ofF in four fluorescent channels. Filters for each fluorescent channel (Semrock, Rochester, NY):B andG: excitation 628 ± 20 nm, emission 692 ± 20 nm;C andH: excitation 586 ± 10 nm, emission 628 ± 19 nm;D andI: excitation 482 ± 9 nm, emission 520 ± 14 nm;E andJ: excitation 387 ± 6 nm, emission 409 nm and longer. Images from a given fluorescent channel are adjusted to have the same contrast. (K) Brightfield and widefield fluorescent images of tissue from the same block as inA, stained with H&E, after each step of ExPath processing. Images from a given fluorescent channel are adjusted to have the same contrast. Samples may be especially bright after the heat treatment and gelation steps due to the buffer compositions present. Scale bars:A-J, 500 μm;K, 40 μm (for yellow scalebars, post-expansion, physical size 184 μm; expansion factor: 4.58).
Supplementary Figure 5 Heat treatment significantly improves immunostaining of vimentin and actinin-4 on human kidney samples.
Left panel, widefield fluorescent images of acetone fixed human kidney sections with and without heat treatment in citrate buffer. Right panel, zooms into regions corresponding to the regions indicated by the dashed yellow rectangles in the left panels. Scale bars: 1 mm (left panel), 200 μm (right panel). Abbreviations: ACTN4, actinin-4; ColIV, collagen IV.
Supplementary Figure 6 Anti-actinin-4 specifically stains tertiary podocyte foot processes.
(A-D) Post-expansion widefield images of a human acetone fixed kidney section stained with DAPI and antibodies. Blue, vimentin; green, actinin-4; red, synaptopodin; gray, DAPI. (E) Merged image of (A-D). (F andG) Magnified regions showing actinin-4 (F) and synaptopodin (G) zoomed into the white dashed squares ofB andC. (H) Profiles of fluorescent intensity taken along the white dashed line cuts ofF andG. Green, actinin-4; red, synaptopodin. Scale bars: 1 μm (4.5 μm physical size, expansion factor 4.5).
Supplementary Figure 7 Immunostaining images of FFPE kidney samples.
A. Post-expansion widefield image of a FFPE normal human kidney sample treated with a citrate antigen retrieval method (20 mM sodium citrate, pH 8.0), with highlighted region (boxed line) magnified in panelB.C. Post-expansion widefield image of a FFPE normal human kidney sample treated with a Tris-EDTA antigen retrieval method (10 mM Tris base, 1 mM EDTA solution, 0.05% Tween 20, pH 9.0), with highlighted region (boxed line) magnified in panelD.E. Post-expansion confocal image of a FFPE normal human kidney sample treated with a citrate antigen retrieval method, with highlighted region (boxed line) magnified inF.G. Post-expansion confocal image of a FFPE human kidney sample with minimal change disease treated with a citrate antigen retrieval method, with highlighted region (boxed line) magnified inH. All the samples were stained with DAPI (gray) and antibodies against vimentin (blue), actinin-4 (green) and collagen IV (magenta). Scale bars:A,C,E andG, 40 μm (physical size).B,D,F, andH, 8 μm (physical size).
Supplementary Figure 8 Training and and test images for single-blinded nephrotic kidney disease diagnosis.
Frozen kidney sections fixed with acetone were stained with DAPI and antibodies. Blue, vimentin; green, actinin-4; magenta, collagen IV; gray, DAPI. Scale bars are indicated in images. For ExPath images, only physical size is indicated. Expansion factors are listed inSupplementary Table 4.
Supplementary Figure 9 Examples of computational detection and segmentation of the nuclei in pre-expansion H&E images and post-expansion fluorescent images (ExPath).
Computational detection and segmentation of the nuclei is significantly more accurate in expanded samples as compared to pre-expanded samples: examples of normal breast, usual ductal hyperplasia (UDH), atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS). For the “expert annotation” and “automated segmentation” columns: green filled nuclei are nuclei segmented by the expert or the automated segmentation algorithm, respectively (red circles indicate nucleus outlines, which are not visible in the ExPath row because the resolution is too high and thus the outline is barely visible). In the “automated vs expert” column: green filled nuclei, true positives; red filled nuclei, false negatives; blue filled nuclei, false positives (note that when the automated segmentation yielded larger outlines than the expert, this is expressed as a blue “halo” around the green).
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–9 and Supplementary Tables 1–15 (PDF 3190 kb)
Rights and permissions
About this article
Cite this article
Zhao, Y., Bucur, O., Irshad, H.et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.Nat Biotechnol35, 757–764 (2017). https://doi.org/10.1038/nbt.3892
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Expansion and fluctuations-enhanced microscopy for nanoscale molecular profiling of cells and tissues
- Dominik Kylies
- Hannah S. Heil
- Ricardo Henriques
Nature Protocols (2026)
Visualising viral interactions and mechanisms at the nanoscale with expansion microscopy
- Lisa Övermöhle
- Maximilian Baum
- Katharina M. Scherer
npj Viruses (2026)
Filter-aided expansion proteomics for the spatial analysis of single cells and organelles in FFPE tissue samples
- Zhen Dong
- Chunlong Wu
- Tiannan Guo
Nature Protocols (2025)
A key role for hepatitis C virus NS5A serine 225 phosphorylation revealed by super-resolution microscopy
- Niluka Goonawardane
- Chunhong Yin
- Mark Harris
Scientific Reports (2025)
Expansion omics: from expansion microscopy to spatial omics
- Zhen Dong
- Weirong Xiang
- Tiannan Guo
Molecular Systems Biology (2025)


