Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Review Article
  • Published:

Interpreting noncoding genetic variation in complex traits and human disease

Nature Biotechnologyvolume 30pages1095–1106 (2012)Cite this article

Subjects

Abstract

Association studies provide genome-wide information about the genetic basis of complex disease, but medical research has focused primarily on protein-coding variants, owing to the difficulty of interpreting noncoding mutations. This picture has changed with advances in the systematic annotation of functional noncoding elements. Evolutionary conservation, functional genomics, chromatin state, sequence motifs and molecular quantitative trait loci all provide complementary information about the function of noncoding sequences. These functional maps can help with prioritizing variants on risk haplotypes, filtering mutations encountered in the clinic and performing systems-level analyses to reveal processes underlying disease associations. Advances in predictive modeling can enable data-set integration to reveal pathways shared across loci and alleles, and richer regulatory models can guide the search for epistatic interactions. Lastly, new massively parallel reporter experiments can systematically validate regulatory predictions. Ultimately, advances in regulatory and systems genomics can help unleash the value of whole-genome sequencing for personalized genomic risk assessment, diagnosis and treatment.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four types of association tests.
Figure 2: Dissecting haplotypes discovered through association tests.
Figure 3: Systems-level analyses beyond isolated common haplotypes.

Similar content being viewed by others

Article25 January 2023

References

  1. Collins, F. Has the revolution arrived?Nature464, 674–675 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  2. Lander, E.S. Initial impact of the sequencing of the human genome.Nature470, 187–197 (2011).

    CAS PubMed  Google Scholar 

  3. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease.Nat. Genet.33, 228–237 (2003).

    CAS PubMed  Google Scholar 

  4. Hamosh, A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.33, D514–D517 (2005).

    CAS PubMed  Google Scholar 

  5. Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am. J. Hum. Genet.32, 314–331 (1980).

    CAS PubMed PubMed Central  Google Scholar 

  6. Lander, E.S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics121, 185–199 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  7. Watson, J.D. The Human Genome Project: past, present, and future.Science248, 44–49 (1990).

    CAS PubMed  Google Scholar 

  8. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results.Nat. Genet.11, 241–247 (1995).

    CAS PubMed  Google Scholar 

  9. International HapMap Consortium. The International HapMap Project.Nature426, 789–796 (2003).

  10. McCarthy, M.I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges.Nat. Rev. Genet.9, 356–369 (2008).

    CAS PubMed  Google Scholar 

  11. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.Proc. Natl. Acad. Sci. USA106, 9362–9367 (2009).The NHGRI GWAS Catalog reported here laid the groundwork for systematic intersection of functional annotations with disease-associated regions, and highlighted the preponderance of noncoding disease associations.

    CAS PubMed PubMed Central  Google Scholar 

  12. Manolio, T.A. et al. Finding the missing heritability of complex diseases.Nature461, 747–753 (2009).This paper reports the deliberations of the NHGRI's expert working group on the sources of unexplained heritability, and their suggestions for future research strategies.

    CAS PubMed PubMed Central  Google Scholar 

  13. Cirulli, E.T. & Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing.Nat. Rev. Genet.11, 415–425 (2010).

    CAS PubMed  Google Scholar 

  14. Fisher, R. The correlation between relatives on the supposition of Mendelian inheritance.Trans. R. Soc. Edinb.52, 399–433 (1918).

    Google Scholar 

  15. Visscher, P.M. McEvoy, B. & Yang, J. From Galton to GWAS: quantitative genetics of human height.Genet. Res.92, 371–379 (2010).

    Google Scholar 

  16. MacArthur, D.G. et al. A systematic survey of loss-of-function variants in human protein-coding genes.Science335, 823–828 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  17. Nelson, M.R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people.Science337, 100–104 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  18. Park, P.J. ChIP–seq: advantages and challenges of a maturing technology.Nat. Rev. Genet.10, 669–680 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  19. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis.Nucleic Acids Res.33, 5868–5877 (2005).

    CAS PubMed PubMed Central  Google Scholar 

  20. Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome.Cell132, 311–322 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  21. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome.Nature489, 57–74 (2012).The ENCODE consortium scale-up datasets represent the most comprehensive annotation of the noncoding genome at the time of this review.

  22. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium.Nat. Biotechnol.28, 1045–1048 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  23. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood.Nat. Biotechnol.30, 224–226 (2012).

    CAS PubMed  Google Scholar 

  24. Bussemaker, H.J., Foat, B.C. & Ward, L.D. Predictive modeling of genome-wide mRNA expression: from modules to molecules.Annu. Rev. Biophys. Biomol. Struct.36, 329–347 (2007).

    CAS PubMed  Google Scholar 

  25. Tompa, M. et al. Assessing computational tools for the discovery of transcription factor binding sites.Nat. Biotechnol.23, 137–144 (2005).

    CAS PubMed  Google Scholar 

  26. Barash, Y. et al. Deciphering the splicing code.Nature465, 53–59 (2010).

    CAS PubMed  Google Scholar 

  27. Wang, Z. & Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code.RNA14, 802–813 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  28. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals.Nature434, 338–345 (2005).

    CAS PubMed PubMed Central  Google Scholar 

  29. Moses, A.M., Chiang, D., Pollard, D., Iyer, V. & Eisen, M. MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model.Genome Biol.5, R98 (2004).

    PubMed PubMed Central  Google Scholar 

  30. Hesselberth, J.R. et al. Global mapping of protein-DNA interactionsin vivo by digital genomic footprinting.Nat. Methods6, 283–289 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  31. Henikoff, J.G., Belsky, J.A., Krassovsky, K., MacAlpine, D.M. & Henikoff, S. Epigenome characterization at single base-pair resolution.Proc. Natl. Acad. Sci. USA108, 18318–18323 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  32. Rhee, H.S. & Pugh, B.F. Comprehensive genome-wide protein–DNA interactions detected at single-nucleotide resolution.Cell147, 1408–1419 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  33. Beer, M.A. & Tavazoie, S. Predicting gene expression from sequence.Cell117, 185–198 (2004).

    CAS PubMed  Google Scholar 

  34. Roy, S. et al. Identification of functional elements and regulatory circuits byDrosophila modENCODE.Science330, 1787–1797 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  35. Gerstein, M.B. et al. Architecture of the human regulatory network derived from ENCODE data.Nature489, 91–100 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  36. Davidson, E.H. et al. A genomic regulatory network for development.Science295, 1669–1678 (2002).

    CAS PubMed  Google Scholar 

  37. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancersin vivo.Nat. Biotechnol.30, 265–270 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  38. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters.Nat. Biotechnol.30, 521–530 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  39. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay.Nat. Biotechnol.30, 271–277 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  40. Davydov, E.V. et al. Identifying a high fraction of the human to be under selective constraint using GERP++.PLOS Comput. Biol.6, e1001025 (2010).

    PubMed PubMed Central  Google Scholar 

  41. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals.Nature478, 476–482 (2011).Conserved elements were shown to be enriched among disease-associated variants, motivating the use of conservation to guide candidate causal SNP selection.

    CAS PubMed PubMed Central  Google Scholar 

  42. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements.Nature423, 241–254 (2003).

    CAS PubMed  Google Scholar 

  43. Stark, A. et al. Discovery of functional elements in 12Drosophila genomes using evolutionary signatures.Nature450, 219–232 (2007).

    CAS PubMed PubMed Central  Google Scholar 

  44. Papatsenko, D., Kislyuk, A., Levine, M. & Dubchak, I. Conservation patterns in different functional sequence categories of divergentDrosophila species.Genomics88, 431–442 (2006).

    CAS PubMed  Google Scholar 

  45. Dermitzakis, E.T. & Clark, A.G. Evolution of transcription factor binding sites in mammalian gene regulatory regions: conservation and turnover.Mol. Biol. Evol.19, 1114–1121 (2002).

    CAS PubMed  Google Scholar 

  46. Meader, S., Ponting, C.P. & Lunter, G. Massive turnover of functional sequence in human and other mammalian genomes.Genome Res.20, 1335–1343 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  47. Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding.Science328, 1036–1040 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  48. Brawand, D. et al. The evolution of gene expression levels in mammalian organs.Nature478, 343–348 (2011).

    CAS PubMed  Google Scholar 

  49. Ng, P.C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function.Nucleic Acids Res.31, 3812–3814 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  50. Yue, P., Melamud, E. & Moult, J. SNPs3D: candidate gene and SNP selection for association studies.BMC Bioinformatics7, 166 (2006).

    PubMed PubMed Central  Google Scholar 

  51. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey.Nucleic Acids Res.30, 3894–3900 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  52. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations.Nat. Methods7, 248–249 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  53. Baker, M. Functional genomics: the changes that count.Nature482, 257–262 (2012).

    CAS PubMed  Google Scholar 

  54. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.Nucleic Acids Res.40, D930–D934 (2012).

    CAS PubMed  Google Scholar 

  55. Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB.Genome Res.22, 1790–1797 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  56. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor.Bioinformatics26, 2069–2070 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.Nucleic Acids Res.38, e164 (2010).

    PubMed PubMed Central  Google Scholar 

  58. Yandell, M. et al. A probabilistic disease-gene finder for personal genomes.Genome Res. 10.1101/gr.123158.111 (2011).

  59. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA102, 15545–15550 (2005).

    CAS PubMed PubMed Central  Google Scholar 

  60. Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies.Nat. Rev. Genet.11, 843–854 (2010).

    CAS PubMed  Google Scholar 

  61. McKinney, B.A. & Pajewski, N.M. Six degrees of epistasis: statistical network models for GWAS.Front. Genet2, 109 (2012).

    PubMed PubMed Central  Google Scholar 

  62. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types.Nature473, 43–49 (2011).This was the first demonstration that cross-tissue enhancer maps can link noncoding variants from GWAS to relevant cell types and candidate regulatory mechanisms.

    CAS PubMed PubMed Central  Google Scholar 

  63. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA.Science337, 1190–1195 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  64. Nica, A.C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations.PLoS Genet.6, e1000895 (2010).This study uses eQTLs to investigate the tissue specificity of gene regulatory mechanisms, and suggests that assaying many tissues will be critical to developing a cis-regulatory map of the human genome.

    PubMed PubMed Central  Google Scholar 

  65. Nicolae, D.L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS.PLoS Genet.6, e1000888 (2010).

    PubMed PubMed Central  Google Scholar 

  66. Cantor, R.M., Lange, K. & Sinsheimer, J.S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application.Am. J. Hum. Genet.86, 6–22 (2010).The authors present an extensive review of how biological annotations are being used in association studies and to interpret their results. They show how knowledge of molecular pathways can be used to enhance discovery, test for epistasis and aggregate results.

    CAS PubMed PubMed Central  Google Scholar 

  67. Knight, J., Barnes, M.R., Breen, G. & Weale, M.E. Using functional annotation for the empirical determination of Bayes factors for genome-wide association study analysis.PLoS ONE6, e14808 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  68. Lewinger, J.P., Conti, D.V., Baurley, J.W., Triche, T.J. & Thomas, D.C. Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation.Genet. Epidemiol.31, 871–882 (2007).

    PubMed  Google Scholar 

  69. Chen, G.K. & Witte, J.S. Enriching the analysis of genomewide association studies with hierarchical modeling.Am. J. Hum. Genet.81, 397–404 (2007).

    CAS PubMed PubMed Central  Google Scholar 

  70. Lee, I., Blom, U.M., Wang, P.I., Shim, J.E. & Marcotte, E.M. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.Genome Res.21, 1109–1121 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  71. Dering, C., Hemmelmann, C., Pugh, E. & Ziegler, A. Statistical analysis of rare sequence variants: an overview of collapsing methods.Genet. Epidemiol.35, S12–S17 (2011).

    PubMed PubMed Central  Google Scholar 

  72. Bansal, V., Libiger, O., Torkamani, A. & Schork, N.J. Statistical analysis strategies for association studies involving rare variants.Nat. Rev. Genet.11, 773–785 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  73. Pai, A.A., Bell, J.T., Marioni, J.C., Pritchard, J.K. & Gilad, Y. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.PLoS Genet.7, e1001316 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  74. Degner, J.F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation.Nature482, 390–394 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  75. Kasowski, M. et al. Variation in transcription factor binding among humans.Science328, 232–235 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  76. Majewski, J. & Pastinen, T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes.Trends Genet.27, 72–79 (2011).

    CAS PubMed  Google Scholar 

  77. Pickrell, J.K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing.Nature464, 768–772 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  78. Lappalainen, T., Montgomery, S.B., Nica, A.C. & Dermitzakis, E.T. Epistatic selection between coding and regulatory variation in human evolution and disease.Am. J. Hum. Genet.89, 459–463 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  79. Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation.Nat. Genet.40, 904–908 (2008).

    CAS PubMed  Google Scholar 

  80. Prendergast, J.G., Tong, P., Hay, D.C., Farrington, S.M. & Semple, C.A. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci.Epigenetics Chromatin5, 6 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  81. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans.Science328, 235–239 (2010).In this study, the authors demonstrated that both genomic protein binding and DNase I hypersensitivity were heritable, and therefore under genetic control.

    CAS PubMed PubMed Central  Google Scholar 

  82. Maynard, N.D., Chen, J., Stuart, R.K., Fan, J.-B. & Ren, B. Genome-wide mapping of allele-specific protein-DNA interactions in human cells.Nat. Methods5, 307–309 (2008).

    CAS PubMed  Google Scholar 

  83. Ge, B. et al. Global patterns of cis variation in human cells revealed by high-density allelic expression analysis.Nat. Genet.41, 1216–1222 (2009).

    CAS PubMed  Google Scholar 

  84. Ng, P.C., Murray, S.S., Levy, S. & Venter, J.C. An agenda for personalized medicine.Nature461, 724–726 (2009).

    CAS PubMed  Google Scholar 

  85. Patterson, N. et al. Methods for high-density admixture mapping of disease genes.Am. J. Hum. Genet.74, 979–1000 (2004).

    CAS PubMed PubMed Central  Google Scholar 

  86. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing.Nature467, 1061–1073 (2010).

  87. Coop, G. et al. The role of geography in human adaptation.PLoS Genet.5, e1000500 (2009).

    PubMed PubMed Central  Google Scholar 

  88. Hernandez, R.D. et al. Classic selective sweeps were rare in recent human evolution.Science331, 920–924 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  89. Sabeti, P.C. et al. Positive natural selection in the human lineage.Science312, 1614–1620 (2006).

    CAS PubMed  Google Scholar 

  90. Grossman, S.R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection.Science327, 883–886 (2010).

    CAS PubMed  Google Scholar 

  91. Ott, J., Kamatani, Y. & Lathrop, M. Family-based designs for genome-wide association studies.Nat. Rev. Genet.12, 465–474 (2011).

    CAS PubMed  Google Scholar 

  92. Minichiello, M.J. & Durbin, R. Mapping trait loci by use of inferred ancestral recombination graphs.Am. J. Hum. Genet.79, 910–922 (2006).

    CAS PubMed PubMed Central  Google Scholar 

  93. Wu, Y. Association mapping of complex diseases with ancestral recombination graphs: models and efficient algorithms.J. Comput. Biol.15, 667–684 (2008).

    CAS PubMed  Google Scholar 

  94. Asthana, S. et al. Widely distributed noncoding purifying selection in the human genome.Proc. Natl. Acad. Sci. USA104, 12410–12415 (2007).

    CAS PubMed PubMed Central  Google Scholar 

  95. Ward, L.D. & Kellis, M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions.Science 10.1126/science.1225057 (2012).

  96. Hill, W.G., Goddard, M.E. & Visscher, P.M. Data and theory point to mainly additive genetic variance for complex traits.PLoS Genet.4, e1000008 (2008).

    PubMed PubMed Central  Google Scholar 

  97. Shao, H. et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis.Proc. Natl. Acad. Sci. USA105, 19910–19914 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  98. Zuk, O., Hechter, E., Sunyaev, S.R. & Lander, E.S. The mystery of missing heritability: Genetic interactions create phantom heritability.Proc. Natl. Acad. Sci. USA 10.1073/pnas.1119675109 (2012).

  99. Costanzo, M. et al. The genetic landscape of a cell.Science327, 425–431 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  100. Cordell, H.J. Detecting gene–gene interactions that underlie human diseases.Nat. Rev. Genet.10, 392–404 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  101. Musani, S.K. et al. Detection of gene x gene interactions in genome-wide association studies of human population data.Hum. Hered.63, 67–84 (2007).

    CAS PubMed  Google Scholar 

  102. Lou, X.-Y. et al. A combinatorial approach to detecting gene–gene and gene–environment interactions in family studies.Am. J. Hum. Genet.83, 457–467 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  103. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height.Nature467, 832–838 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  104. Emily, M., Mailund, T., Hein, J., Schauser, L. & Schierup, M.H. Using biological networks to search for interacting loci in genome-wide association studies.Eur. J. Hum. Genet.17, 1231–1240 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  105. Mechanic, L.E., Luke, B.T., Goodman, J.E., Chanock, S.J. & Harris, C.C. Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions.BMC Bioinformatics9, 146 (2008).

    PubMed PubMed Central  Google Scholar 

  106. Pattin, K.A. & Moore, J.H. Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases.Hum. Genet.124, 19–29 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  107. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation.Science295, 1306–1311 (2002).

    CAS PubMed  Google Scholar 

  108. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.Science326, 289–293 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  109. Fullwood, M.J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome.Nature462, 58–64 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  110. Cheng, C. et al. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data.PLOS Comput. Biol.7, e1002190 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  111. Zhu, J. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.Nat. Genet.40, 854–861 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  112. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.Nature483, 603–607 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  113. Burke, M.K. et al. Genome-wide analysis of a long-term evolution experiment withDrosophila.Nature467, 587–590 (2010).

    CAS PubMed  Google Scholar 

  114. Gresham, D. et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.PLoS Genet.4, e1000303 (2008).

    PubMed PubMed Central  Google Scholar 

  115. Perlstein, E.O., Ruderfer, D.M., Roberts, D.C., Schreiber, S.L. & Kruglyak, L. Genetic basis of individual differences in the response to small-molecule drugs in yeast.Nat. Genet.39, 496–502 (2007).

    CAS PubMed  Google Scholar 

  116. Quackenbush, J. Microarray analysis and tumor classification.N. Engl. J. Med.354, 2463–2472 (2006).

    CAS PubMed  Google Scholar 

  117. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0.Bioinformatics27, 1739–1740 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  118. Rakyan, V.K., Down, T.A., Balding, D.J. & Beck, S. Epigenome-wide association studies for common human diseases.Nat. Rev. Genet.12, 529–541 (2011).The authors review the challenges and promise of EWAS, and how their results can be used in conjunction with GWAS.

    CAS PubMed PubMed Central  Google Scholar 

  119. Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases.Nature465, 721–727 (2010).

    CAS PubMed  Google Scholar 

  120. Chen, L.S., Emmert-Streib, F. & Storey, J.D. Harnessing naturally randomized transcription to infer regulatory relationships among genes.Genome Biol.8, R219 (2007).

    PubMed PubMed Central  Google Scholar 

  121. Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology.Stat. Med.27, 1133–1163 (2008).

    PubMed  Google Scholar 

  122. Voight, B.F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.Lancet380, 572–580.

  123. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes.Cell148, 1293–1307 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  124. Anonymous. Asking for more.Nat. Genet.44, 733 (2012).

  125. Homer, N. et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays.PLoS Genet.4, e1000167 (2008).

    PubMed PubMed Central  Google Scholar 

  126. Salathé, M. et al. Digital epidemiology.PLOS Comput. Biol.8, e1002616 (2012).

    PubMed PubMed Central  Google Scholar 

  127. Brownstein, J.S., Sordo, M., Kohane, I.S. & Mandl, K.D. The tell-tale heart: population-based surveillance reveals an association of rofecoxib and celecoxib with myocardial Infarction.PLoS ONE2, e840 (2007).

    PubMed PubMed Central  Google Scholar 

  128. Roque, F.S. et al. Using electronic patient records to discover disease correlations and stratify patient cohorts.PLOS Comput. Biol.7, e1002141 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  129. Wilke, R.A. et al. The emerging role of electronic medical records in pharmacogenomics.Clin. Pharmacol. Ther.89, 379–386 (2011).

    CAS PubMed  Google Scholar 

  130. Nebert, D.W., Zhang, G. & Vesell, E.S. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions.Drug Metab. Rev.40, 187–224 (2008).A critical review of current challenges in human genetics and the application of pharmacogenetic discoveries to clinical practice.

    CAS PubMed PubMed Central  Google Scholar 

  131. Garrod, A. E. & Harris, H.Inborn Errors of Metabolism (Henry Frowde and Hodder & Stoughton, London, 1909).

    Google Scholar 

  132. Woo, S.L., Lidsky, A.S., Güttler, F., Chandra, T. & Robson, K.J. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria.Nature306, 151–155 (1983).

    CAS PubMed  Google Scholar 

  133. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.Science245, 1066–1073 (1989).

    CAS PubMed  Google Scholar 

  134. Audrézet, M.P. et al. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms.Hum. Mutat.23, 343–357 (2004).

    PubMed  Google Scholar 

  135. Zschocke, J. Phenylketonuria mutations in Europe.Hum. Mutat.21, 345–356 (2003).

    CAS PubMed  Google Scholar 

  136. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review.J. Med. Genet.45, 1–14 (2008).

    CAS PubMed  Google Scholar 

  137. Yang, J. et al. Common SNPs explain a large proportion of heritability for human height.Nat. Genet.42, 565–569 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  138. Purcell, S.M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.Nature460, 748–752 (2009).

    CAS PubMed  Google Scholar 

  139. Nica, A.C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.PLoS Genet.7, e1002003 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  140. King, J.L. & Jukes, T.H. Non-Darwinian evolution.Science164, 788–798 (1969).

    CAS PubMed  Google Scholar 

  141. Kimura, M. Evolutionary rate at the molecular level.Nature217, 624–626 (1968).

    CAS PubMed  Google Scholar 

  142. Ohno, S. So much 'junk' DNA in our genome.Brookhaven Symp. Biol.23, 366–370 (1972).

    CAS PubMed  Google Scholar 

  143. Stratton, M.R., Campbell, P.J. & Futreal, P.A. The cancer genome.Nature458, 719–724 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  144. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes.Nat. Genet.39, 906–913 (2007).

    CAS PubMed  Google Scholar 

  145. Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits.PLoS Genet.3, e114 (2007).

    PubMed PubMed Central  Google Scholar 

  146. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies.Nat. Genet.38, 904–909 (2006).

    CAS PubMed  Google Scholar 

  147. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007).

    CAS PubMed PubMed Central  Google Scholar 

  148. Veyrieras, J.-B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation.PLoS Genet.4, e1000214 (2008).

    PubMed PubMed Central  Google Scholar 

  149. Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.Bioinformatics28, 1353–1358 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  150. Rozowsky, J. et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework.Mol. Syst. Biol.7, 522 (2011).

    PubMed PubMed Central  Google Scholar 

  151. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments.Stat. Appl. Genet. Mol. Biol.3, 3 (2004).

    Google Scholar 

  152. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics26, 139–140 (2010).

    CAS PubMed  Google Scholar 

  153. Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs.Nat. Genet.40, 1253–1260 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  154. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res.20, 1297–1303 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  155. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.Genet. Epidemiol.34, 816–834 (2010).

    PubMed PubMed Central  Google Scholar 

  156. Faustino, N.A. & Cooper, T.A. Pre-mRNA splicing and human disease.Genes Dev.17, 419–437 (2003).

    CAS PubMed  Google Scholar 

  157. Cáceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease.Trends Genet.18, 186–193 (2002).

    PubMed  Google Scholar 

  158. López-Bigas, N., Audit, B., Ouzounis, C., Parra, G. & Guigó, R. Are splicing mutations the most frequent cause of hereditary disease?FEBS Lett.579, 1900–1903 (2005).

    PubMed  Google Scholar 

  159. Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome.Nat. Genet.17, 467–470 (1997).

    CAS PubMed  Google Scholar 

  160. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy.Proc. Natl. Acad. Sci. USA96, 6307–6311 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  161. Cazzola, M. & Skoda, R.C. Translational pathophysiology: a novel molecular mechanism of human disease.Blood95, 3280–3288 (2000).

    CAS PubMed  Google Scholar 

  162. Bisio, A. et al. Functional analysis of CDKN2A/p16INK4a 5′-UTR variants predisposing to melanoma.Hum. Mol. Genet.19, 1479–1491 (2010).

    CAS PubMed  Google Scholar 

  163. Abelson, J.F. et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome.Science310, 317–320 (2005).

    CAS PubMed  Google Scholar 

  164. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.Nature458, 223–227 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  165. Ponting, C.P., Oliver, P.L. & Reik, W. Evolution and functions of long noncoding RNAs.Cell136, 629–641 (2009).

    CAS PubMed  Google Scholar 

  166. Bonafé, L. et al. Evolutionary comparison provides evidence for pathogenicity of RMRP mutations.PLoS Genet.1, e47 (2005).

    PubMed PubMed Central  Google Scholar 

  167. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease.Cell136, 777–793 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  168. Knight, J.C. Regulatory polymorphisms underlying complex disease traits.J. Mol. Med.83, 97–109 (2005).

    CAS PubMed  Google Scholar 

  169. Martin, M.P. et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5.Science282, 1907–1911 (1998).

    CAS PubMed  Google Scholar 

  170. Bream, J.H. et al. CCR5 promoter alleles and specific DNA binding factors.Science284, 223 (1999).

    CAS PubMed  Google Scholar 

  171. Bray, N.J. et al. Allelic expression of APOE in human brain: effects of epsilon status and promoter haplotypes.Hum. Mol. Genet.13, 2885–2892 (2004).

    CAS PubMed  Google Scholar 

  172. St George-Hyslop, P.H. & Petit, A. Molecular biology and genetics of Alzheimer's disease.C. R. Biol.328, 119–130 (2005).

    CAS PubMed  Google Scholar 

  173. Exner, M., Minar, E., Wagner, O. & Schillinger, M. The role of heme oxygenase-1 promoter polymorphisms in human disease.Free Radic. Biol. Med.37, 1097–1104 (2004).

    CAS PubMed  Google Scholar 

  174. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: Emerging mechanisms and disruption in disease.Am. J. Hum. Genet.76, 8–32 (2005).

    CAS PubMed  Google Scholar 

  175. Noonan, J.P. & McCallion, A.S. Genomics of long-range regulatory elements.Annu. Rev. Genomics Hum. Genet.11, 1–23 (2010).

    CAS PubMed  Google Scholar 

  176. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting enhancers.Nature461, 199–205 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  177. Lettice, L.A. et al. A long-range Shh enhancer regulates expression in the developing limb and Fin and is associated with preaxial polydactyly.Hum. Mol. Genet.12, 1725–1735 (2003).

    CAS PubMed  Google Scholar 

  178. Sakabe, N.J., Savic, D. & Nobrega, M.A. Transcriptional enhancers in development and disease.Genome Biol.13, 238 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  179. Pomerantz, M.M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.Nat. Genet.41, 882–884 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  180. Tuupanen, S. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling.Nat. Genet.41, 885–890 (2009).

    CAS PubMed  Google Scholar 

  181. Wasserman, N.F., Aneas, I. & Nobrega, M.A. An 8q24 gene desert variant associated with prostate cancer risk confers differentialin vivo activity to a MYC enhancer.Genome Res.20, 1191–1197 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  182. Duan, J. et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor.Hum. Mol. Genet.12, 205–216 (2003).

    CAS PubMed  Google Scholar 

  183. Burgner, D. et al. A genome-wide association study identifies novel and functionally related susceptibility loci for Kawasaki disease.PLoS Genet.5, e1000319 (2009).

    PubMed PubMed Central  Google Scholar 

  184. Emilsson, V. et al. Genetics of gene expression and its effect on disease.Nature452, 423–428 (2008).

    CAS PubMed  Google Scholar 

  185. Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits.PLoS Genet.6, e1001058 (2010).

    PubMed PubMed Central  Google Scholar 

  186. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions.PLoS Genet.5, e1000534 (2009).

    PubMed PubMed Central  Google Scholar 

  187. Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn's disease.Hum. Mol. Genet.19, 3482–3488 (2010).

    CAS PubMed  Google Scholar 

  188. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome.Nat. Biotechnol.28, 817–825 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  189. Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome.Genome Res.22, 1748–1759 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  190. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns.Nat. Genet.43, 264–268 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  191. Cowper-Sal·lari, R. et al. Breast cancer risk–associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression.Nat. Genet.44, 1191–1191 (2012).

    PubMed PubMed Central  Google Scholar 

  192. Kraft, P. & Hunter, D.J. Genetic risk prediction—Are we there yet?N. Engl. J. Med.360, 1701–1703 (2009).

    CAS PubMed  Google Scholar 

  193. Yngvadottir, B., MacArthur, D.G., Jin, H. & Tyler-Smith, C. The promise and reality of personal genomics.Genome Biol.10, 237 (2009).

    PubMed PubMed Central  Google Scholar 

  194. Roberts, N.J. et al. The predictive capacity of personal genome sequencing.Sci. Transl. Med.4, 133ra58 (2012).

    PubMed PubMed Central  Google Scholar 

  195. Jostins, L. & Barrett, J.C. Genetic risk prediction in complex disease.Hum. Mol. Genet.20, R182–R188 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  196. Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis.Nat. Genet.44, 483–489 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  197. Cooper, G.M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.Nat. Rev. Genet.12, 628–640 (2011).

    CAS PubMed  Google Scholar 

  198. Gibson, G. Rare and common variants: twenty arguments.Nat. Rev. Genet.13, 135–145 (2011).

    Google Scholar 

  199. Goldstein, D.B. The importance of synthetic associations will only be resolved empirically.PLoS Biol.9, e1001008 (2011).

    CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

L.D.W. and M.K. were funded by NIH grants R01HG004037 and RC1HG005334 and US National Science Foundation CAREER grant 0644282.

Author information

Authors and Affiliations

  1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

    Lucas D Ward & Manolis Kellis

  2. The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA

    Lucas D Ward & Manolis Kellis

Authors
  1. Lucas D Ward

    You can also search for this author inPubMed Google Scholar

  2. Manolis Kellis

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toLucas D Ward orManolis Kellis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Ward, L., Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease.Nat Biotechnol30, 1095–1106 (2012). https://doi.org/10.1038/nbt.2422

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp