Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5

Naturevolume 553pages473–476 (2018)Cite this article

Subjects

Abstract

Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshiftz = 7.09 has remained the only one known atz > 7 for more than half a decade1. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshiftz = 7.54. This quasar has a bolometric luminosity of 4 × 1013 times the luminosity of the Sun and a black-hole mass of 8 × 108 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old—just five per cent of its current age—reinforces models of early black-hole growth that allow black holes with initial masses of more than about 104 solar masses2,3 or episodic hyper-Eddington accretion4,5. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn–Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photometry and combined Magellan/FIRE and Gemini/GNIRS near-infrared spectrum of the quasar J1342 + 0928 atz = 7.54.
Figure 2: Black-hole growth of three of the highest-redshift and most-massive quasars in the early Universe.
Figure 3: Continuum emission and damping-wing modelling in the spectrum of J1342 + 0928.
Figure 4: Constraints on the history of reionization.

Similar content being viewed by others

References

  1. Mortlock, D. J. et al. A luminous quasar at a redshift ofz = 7.085.Nature474, 616–619 (2011)

    Article CAS ADS  Google Scholar 

  2. Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe.Mon. Not. R. Astron. Soc.433, 1607–1618 (2013)

    Article ADS  Google Scholar 

  3. Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early Universe by supra-exponential accretion.Science345, 1330–1333 (2014)

    Article CAS ADS  Google Scholar 

  4. Pacucci, F., Volonteri, M. & Ferrara, A. The growth efficiency of high-redshift black holes.Mon. Not. R. Astron. Soc.452, 1922–1933 (2015)

    Article CAS ADS  Google Scholar 

  5. Inayoshi, K., Haiman, Z. & Ostriker, J. P. Hyper-Eddington accretion flows on to massive black holes.Mon. Not. R. Astron. Soc.459, 3738–3755 (2016)

    Article CAS ADS  Google Scholar 

  6. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance.Astron. J.140, 1868–1881 (2010)

    Article ADS  Google Scholar 

  7. Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS).Mon. Not. R. Astron. Soc.379, 1599–1617 (2007)

    Article ADS  Google Scholar 

  8. Bañados, E. et al. The Pan-STARRS1 distantz > 5.6 quasar survey: more than 100 quasars within the first Gyr of the Universe.Astrophys. J. Suppl. Ser.227, 11 (2016)

    Article ADS  Google Scholar 

  9. Venemans, B. P. et al. Copious amounts of dust and gas in az = 7.5 quasar host galaxy.Astrophys. J.851, L8 (2017)

    Article ADS  Google Scholar 

  10. Venemans, B. P. et al. Bright [C ɪɪ] and dust emission in threez > 6.6 quasar host galaxies observed by ALMA.Astrophys. J.816, 37 (2016)

    Article ADS  Google Scholar 

  11. Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters.Astron. Astrophys.594, A13 (2016)

  12. Planck Collaboration. Planck intermediate results. XLVII. Planck constraints on reionization history.Astron. Astrophys.596, A108 (2016)

  13. Vestergaard, M. & Osmer, P. S. Mass functions of the active black holes in distant quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the color-selected sample of the SDSS Fall Equatorial Stripe.Astrophys. J.699, 800–816 (2009)

    Article CAS ADS  Google Scholar 

  14. Mejía-Restrepo, J. E., Lira, P., Netzer, H., Trakhtenbrot, B. & Capellupo, D. M. The effect of nuclear gas distribution on the mass determination of supermassive black holes.Nat. Astron.https://doi.org/10.1038/s41550-017-0305-z (2017)

  15. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars.Astrophys. J. Suppl. Ser.166, 470–497 (2006)

    Article CAS ADS  Google Scholar 

  16. Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.Nature518, 512–515 (2015)

    Article CAS ADS  Google Scholar 

  17. Becker, G. D. et al. Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six.Mon. Not. R. Astron. Soc.447, 3402–3419 (2015)

    Article CAS ADS  Google Scholar 

  18. Miralda-Escudé, J. Reionization of the intergalactic medium and the damping wing of the Gunn–Peterson trough.Astrophys. J.501, 15–22 (1998)

    Article ADS  Google Scholar 

  19. Greig, B., Mesinger, A., Haiman, Z. & Simcoe, R. A. Are we witnessing the epoch of reionization atz = 7.1 from the spectrum of J1120 + 0641?Mon. Not. R. Astron. Soc. 4239–4249 (2016)

  20. Bosman, S. E. I. & Becker, G. D. Re-examining the case for neutral gas near the redshift 7 quasar ULAS J1120 + 0641.Mon. Not. R. Astron. Soc.452, 1105–1111 (2015)

    Article CAS ADS  Google Scholar 

  21. Simcoe, R. A. et al. Extremely metal-poor gas at a redshift of 7.Nature492, 79–82 (2012)

    Article CAS ADS  Google Scholar 

  22. Songaila, A. & Cowie, L. L. The evolution of Lyman limit absorption systems to redshift six.Astrophys. J.721, 1448–1466 (2010)

    Article CAS ADS  Google Scholar 

  23. Zheng, Z.-Y. et al. First results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) survey: cosmological reionization at z ~ 7.Astrophys. J.842, L22 (2017)

    Article ADS  Google Scholar 

  24. Gallerani, S., Fan, X., Maiolino, R. & Pacucci, F. Physical properties of the first quasars.Publ. Astron. Soc. Aust.34, e022 (2017)

    Article ADS  Google Scholar 

  25. Pâris, I. et al. The Sloan Digital Sky Survey quasar catalog: twelfth data release.Astron. Astrophys.597, A79 (2017)

    Article  Google Scholar 

  26. Fan, X. et al. Constraining the evolution of the ionizing background and the epoch of reionization withz ~ 6 quasars. II. A sample of 19 quasars.Astron. J.132, 117–136 (2006)

    Article CAS ADS  Google Scholar 

  27. Eilers, A.-C. et al. Implications ofz ~ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes.Astrophys. J.840, 24 (2017)

    Article ADS  Google Scholar 

  28. Suzuki, N., Tytler, D., Kirkman, D., O’Meara, J. M. & Lubin, D. Predicting QSO continua in the Lyα forest.Astrophys. J.618, 592–600 (2005)

    Article CAS ADS  Google Scholar 

  29. Pâris, I. et al. A principal component analysis of quasar UV spectra atz ~ 3.Astron. Astrophys.530, A50 (2011)

    Article  Google Scholar 

  30. Alvarez, M. A. & Abel, T. Quasar H ɪɪ regions during cosmic reionization.Mon. Not. R. Astron. Soc.380, L30–L34 (2007)

    Article ADS  Google Scholar 

  31. Davies, F., Furlanetto, S. & McQuinn, M. Quasar ionization from Lyα emission in an inhomogeneous intergalactic medium.Mon. Not. R. Astron. Soc.457, 3006–3023 (2016)

    Article CAS ADS  Google Scholar 

  32. Lukić, Z. et al. The Lyman α forest in optically thin hydrodynamical simulations.Mon. Not. R. Astron. Soc.446, 3697–3724 (2015)

    Article ADS  Google Scholar 

  33. Mesinger, A., Furlanetto, S. & Cen, R. 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal.Mon. Not. R. Astron. Soc.411, 955–972 (2011)

    Article ADS  Google Scholar 

  34. Drovandi, C., Pettitt, A. & Lee, A. Bayesian indirect inference using a parametric auxiliary model.Stat. Sci.30, 72–95 (2015)

    Article MathSciNet  Google Scholar 

  35. Bolton, J. S. et al. How neutral is the intergalactic medium surrounding the redshiftz = 7.085 quasar ULAS J1120 + 0641?Mon. Not. R. Astron. Soc.416, L70–L74 (2011)

    Article ADS  Google Scholar 

  36. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer.Publ. Astron. Soc. Pacif.125, 306–312 (2013)

    Article ADS  Google Scholar 

  37. Telfer, R. C., Zheng, W., Kriss, G. A. & Davidsen, A. F. The rest-frame extreme-ultraviolet spectral properties of quasi-stellar objects.Astrophys. J.565, 773–785 (2002)

    Article CAS ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Ossip for support with the FIRE echellette observations and A. Stephens for help preparing the GNIRS observations. This work is based on data collected with the Magellan Baade telescope, the Gemini North telescope (programme GN-2017A-DD-4), the Large Binocular Telescope and the IRAM/NOEMA interferometer. We are grateful for the support provided by the staff of these observatories. We acknowledge the use of the UKIDSS, WISE and DECaLS surveys.

Author information

Authors and Affiliations

  1. The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, 91101, California, USA

    Eduardo Bañados, Daniel D. Kelson & Gwen C. Rudie

  2. Max Planck Institut für Astronomie, Königstuhl 17, Heidelberg, D-69117, Germany

    Bram P. Venemans, Chiara Mazzucchelli, Emanuele P. Farina, Fabian Walter, Roberto Decarli & Hans-Walter Rix

  3. Department of Astronomy, School of Physics, Peking University, Beijing, 100871, China

    Feige Wang & Jinyi Yang

  4. Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, 100871, China

    Feige Wang & Jinyi Yang

  5. INAF—Osservatorio Astronomico di Bologna, via Gobetti 93/3, Bologna, 40129, Italy

    Roberto Decarli

  6. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109, California, USA

    Daniel Stern

  7. Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, 85721-0065, Arizona, USA

    Xiaohui Fan

  8. Department of Physics, Broida Hall, University of California, Santa Barbara, 93106-9530, California, USA

    Frederick B. Davies & Joseph F. Hennawi

  9. MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA

    Robert A. Simcoe & Monica L. Turner

  10. Las Cumbres Observatory, 6740 Cortona Drive, Goleta, 93117, California, USA

    Monica L. Turner

  11. Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, Saint Martin d’Hères, 38406, France

    Jan Martin Winters

Authors
  1. Eduardo Bañados
  2. Bram P. Venemans
  3. Chiara Mazzucchelli
  4. Emanuele P. Farina
  5. Fabian Walter
  6. Feige Wang
  7. Roberto Decarli
  8. Daniel Stern
  9. Xiaohui Fan
  10. Frederick B. Davies
  11. Joseph F. Hennawi
  12. Robert A. Simcoe
  13. Monica L. Turner
  14. Hans-Walter Rix
  15. Jinyi Yang
  16. Daniel D. Kelson
  17. Gwen C. Rudie
  18. Jan Martin Winters

Contributions

E.B., R.D., X.F., E.P.F., C.M., H.-W.R., D.S., B.P.V., F. Walter, F. Wang and J.Y. discussed and planned the candidate selection and observing strategy, and analysed the data. E.B. selected the quasar and with D.S. obtained and analysed the discovery spectrum. R.A.S. provided the final FIRE data reduction. J.F.H. provided the final GNIRS data reduction. G.C.R. carried out the follow-up Fourstar observations for this quasar. D.D.K. reduced the follow-up Fourstar data. J.M.W., B.P.V. and F. Walter contributed to the observations and analysis of the IRAM/NOEMA data. The damping-wing analyses were carried out by E.B. (model A), F.B.D. and J.F.H. (model B), and R.A.S. and M.L.T. (model C). F.B.D. and J.F.H. performed the PCA continuum modelling. R.A.S. performed the analysis to find the characteristics of a single absorber that could cause the absorption profile of the quasar. E.B. led the team and prepared the manuscript. All co-authors discussed the results and provided input to the paper and data analysis.

Corresponding author

Correspondence toEduardo Bañados.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer InformationNature thanks D. Mortlock and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Modelling the intrinsic emission from J1342 + 0928.

The red lines represent the continuum used in the main text, which was constructed by averaging SDSS DR12 quasars with similar Civ properties (equivalent widths and blueshifts) to those observed in J1342 + 0928 (seeFig. 3). The blue lines are 100 random draws of PCA-reconstructed intrinsic emission, as described in Methods. In both cases, the mean intrinsic spectrum is shown as a thick line. The vertical dashed line shows the Lyα wavelength. The PCA-reconstructed spectrum has stronger emission around the Lyα line than does the SDSS-matched reconstructed emission. The dotted line is the mean SDSS quasar from ref.29, which has a much stronger Lyα line than that of any of our continuum models of J1342 + 0928.

Extended Data Figure 2 Damping-wing analysis with continuum 2 (PCA) and model B.

a, Same asFig. 3b, but showing 100 realizations of PCA-predicted intrinsic emission (blue) and damping-wing model (green) draws from the posterior PDF of model B (see Methods for details). Model B masks absorption systems only redwards of the Lyα line (pale blue) because this model takes into account the internal absorption in the proximity zone, which explains the larger scatter bluewards of the Lyα line (dashed vertical line).b, The marginalized posterior PDF of. The 50th percentile is and the 16th–84th (2.5th–97.5th) percentile interval is 0.45–0.87 (0.22–0.98).

Extended Data Figure 3 The marginalized posterior PDF of using continuum 1 (SDSS-matched).

a, Model B.b, Model C. Model B applied to continuum 1 yields the most conservative distribution of our analyses. Even in this case, a significantly neutral Universe with at the 2σ level is implied.

Extended Data Table 1 Survey photometry of the quasar J1342 + 0928 atz = 7.54
Extended Data Table 2 Summary of the constraints on the neutral fraction in the IGM surrounding J1342 + 0928

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bañados, E., Venemans, B., Mazzucchelli, C.et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5.Nature553, 473–476 (2018). https://doi.org/10.1038/nature25180

Download citation

This article is cited by

Comments

Commenting on this article is now closed.

  1. damianoGE

    This super Black Hole is the first impossible object for current "sounded" model ironically surnamed "BIG BONGO"

    Infact this object needs a new reverse model that in bottom of observable universe there are not earlier objects, but only distant objects on the far edge of Hubble expansive Sphere...

    Do you remember that escaping galaxies (GN-z11) and this huge BH, are running at 290000 km/s relatively ( in space) to us, and soon they will disappear at our sight at 14 billion Light years from us.

    And maybe that universe doesn't finish at only 47 billions LY over the observable limit, because in this reversed model I presume that new matter (and antimatter) is created everywhere in natural particles accelerators as Abell 3412 , Abell 2744, blazars, etc ...

    That happens from ever and for ever ... without a beginning ... but eternally !

    Let'us change the universe's paradigm, read
    www.bio-astronomia.blogspot.it

  2. Zdeněk Jícha

    The Reveal Hypothesis expected the discovery of the residual primary black hole. The prerequisite for the energy release of 10 to the 80 J needed for the Big Bang is the collision of 3 gigantic black holes from the previous cycle of the universe (or the remains of three different universes). According to Reveal, the first two (of similar weight) were gravitationally intercepted and adjusted the third black hole path as a twisted projectile directly to the center of gravity of the first two. Emission energy is huge in this scenario, but it does not cause the disappearance of post-collision remnants. Your object found could be a candidate.
    The rise in temperature below the common horizon of events of black holes leading to the emission of elementary particles from the hearts of black holes, the counter-rotation of the hearts with consequent shock stops, the emission of enormous amounts of energy, and the dramatic drop of the common horizon of events recalls the Big Bang inflation phase with mechanical disturbance to symmetry to the subsequent excess of the resulting mass above the antimatter.

  3. Amrit Sorli

    This discovery indicates that Big Bang is a dead modelhttps://medium.com/@bijecti...

Access through your institution
Buy or subscribe

Editorial Summary

A massive black hole in the early Universe

Despite extensive searches, only one quasar has been known at redshifts greater than 7, at 7.09. Eduardo Bañados and colleagues report observations of a quasar at a redshift of 7.54, when the Universe was just 690 million years old, with a black-hole mass 800 million times the mass of the Sun. The spectrum shows that the quasar's Lyman α emission is being substantially absorbed by an intergalactic medium containing significantly neutral hydrogen, indicating that reionization was not complete at that epoch.

Associated content

A beacon at the dawn of the Universe

  • Eliat Glikman
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp