- Letter
- Published:
Parallel palaeogenomic transects reveal complex genetic history of early European farmers
- Mark Lipson1 na1,
- Anna Szécsényi-Nagy2 na1,
- Swapan Mallick1,3,
- Annamária Pósa2,
- Balázs Stégmár2,
- Victoria Keerl4,
- Nadin Rohland1,
- Kristin Stewardson1,5,
- Matthew Ferry1,5,
- Megan Michel1,5,
- Jonas Oppenheimer1,5,
- Nasreen Broomandkhoshbacht1,5,
- Eadaoin Harney1,5,
- Susanne Nordenfelt1,
- Bastien Llamas6,
- Balázs Gusztáv Mende2,
- Kitti Köhler2,
- Krisztián Oross2,
- Mária Bondár2,
- Tibor Marton2,
- Anett Osztás2,
- János Jakucs2,
- Tibor Paluch7,
- Ferenc Horváth7,
- Piroska Csengeri8,
- Judit Koós8,
- Katalin Sebők9,
- Alexandra Anders9,
- Pál Raczky9,
- Judit Regenye10,
- Judit P. Barna11,
- Szilvia Fábián12,
- Gábor Serlegi2,
- Zoltán Toldi13,
- Emese Gyöngyvér Nagy14,
- János Dani14,
- Erika Molnár15,
- György Pálfi15,
- László Márk16,17,18,19,
- Béla Melegh18,20,
- Zsolt Bánfai18,20,
- László Domboróczki21,
- Javier Fernández-Eraso22,
- José Antonio Mujika-Alustiza22,
- Carmen Alonso Fernández23,
- Javier Jiménez Echevarría23,
- Ruth Bollongino4,
- Jörg Orschiedt24,25,
- Kerstin Schierhold26,
- Harald Meller27,
- Alan Cooper6,28,
- Joachim Burger4,
- Eszter Bánffy2,29,
- Kurt W. Alt30,31,32,
- Carles Lalueza-Fox33,
- Wolfgang Haak6,34 &
- …
- David Reich1,3,5
Naturevolume 551, pages368–372 (2017)Cite this article
13kAccesses
393Citations
283Altmetric
Subjects
Abstract
Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants1,2,3,4,5,6,7,8 who received a limited amount of admixture from resident hunter-gatherers3,4,5,9. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000–2900bc,n = 100), Germany (5500–3000bc,n = 42) and Spain (5500–2200bc,n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Accession codes
References
Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers.Science326, 137–140 (2009)
Haak, W. et al. Ancient DNA from European Early Neolithic farmers reveals their Near Eastern affinities.PLoS Biol.8, e1000536 (2010)
Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014)
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Nature522, 207–211 (2015)
Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques.Proc. Natl Acad. Sci. USA112, 11917–11922 (2015)
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians.Nature528, 499–503 (2015)
Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans.Proc. Natl Acad. Sci. USA113, 6886–6891 (2016)
Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.Science342, 257–261 (2013)
Ammerman, A. J. & Cavalli-Sforza, L. L.The Neolithic Transition and the Genetics of Populations in Europe (Princeton, 1984)
Price, T. D. (ed.) inEurope’s First Farmers 301–318 (Cambridge, 2000)
Zvelebil, M. The agricultural transition and the origins of Neolithic society in Europe.Documenta Praehistorica28, 1–26 (2001)
Richards, M. The Neolithic invasion of Europe.Annu. Rev. Anthropol.32, 135–162 (2003)
Tringham, R. inEurope’s First Farmers (ed. Price, T. D. ) 19–56 (Cambridge, 2000)
Bollongino, R. et al. 2000 years of parallel societies in Stone Age central Europe.Science342, 479–481 (2013)
Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.Science344, 747–750 (2014)
Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory.Nat. Commun.5, 5257 (2014)
Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and central European LBK cultures.Mol. Biol. Evol.32, 3132–3142 (2015)
Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)
Fu, Q. et al. The genetic history of Ice Age Europe.Nature534, 200–205 (2016)
Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years.Science346, 1113–1118 (2014)
Loh, P.-R. et al. Inferring admixture histories of human populations using linkage disequilibrium.Genetics193, 1233–1254 (2013)
Bánffy, E. Eastern, central and western Hungary — variations of Neolithisation models.Documenta Praehistorica33, 125–142 (2006)
Domboróczki, L., Kaczanowska, M. & Kozłowski, J. The Neolithic settlement at Tiszaszo˝lo˝s-Domaháza-puszta and the question of the northern spread of the Körös Culture.Atti Soc. Preist. Protost. Friuli-VG17, 101–155 (2010)
Szécsényi-Nagy, A . et al. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization.Proc. R. Soc. Lond. B282, 20150339 (2015)
Raczky, P. inThe Copper Age Cemetery of Budakalász (eds Bondár, M. & Raczky, P. ) 475–485 (Pytheas, 2009)
Martins, H. et al. Radiocarbon dating the beginning of the Neolithic in Iberia: new results, new problems.J. Medit. Arch.28, 105–131 (2015)
Jakucs, J. et al. Between the Vincˇa and Linearbandkeramik worlds: the diversity of practices and identities in the 54th–53rd centuries cal BC in southwest Hungary and beyond.J. World Prehist.29, 267–336 (2016)
Oross, K. et al. Midlife changes: the Sopot burial ground at Alsónyék.Bericht der Römisch-Germanischen Kommission94, 151–178 (2016)
Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians.Nat. Commun.6, 8912 (2015)
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.Proc. Natl Acad. Sci. USA110, 15758–15763 (2013)
Korlevic´, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth.Biotechniques59, 87–93 (2015)
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East.Nature536, 419–424 (2016)
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Phil.Trans. R. Soc. Lond. B370, 20130624 (2015)
DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Solid-phase reversible immobilization for the isolation of PCR products.Nucleic Acids Res.23, 4742–4743 (1995)
Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture.Genome Res.22, 939–946 (2012)
Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos.Nature505, 403–406 (2014)
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.PLoS ONE7, e34131 (2012)
Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.Nat. Genet.23, 147 (1999)
Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root.Am. J. Hum. Genet.90, 675–684 (2012)
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.Nature538, 201–206 (2016)
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013)
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data.BMC Bioinformatics15, 356 (2014)
Domboróczki, L. inThe First Neolithic Sites in Central/South-East European Transect.Volume III: The Körös Culture in EasternHungary (eds Anders, A. & Siklósi, Z. ) 107–111 (Oxford, 2012)
Oross, K. et al. The early days of Neolithic Alsónyék: the Starcˇevo occupation.Bericht der Römisch-Germanischen Kommission94, 93–121 (2016)
Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal.Radiocarbon55, 720–730 (2013)
Reimer, P. J. et al. Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP.Radiocarbon55, 1869–1887 (2013)
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis.PLoS Genet.2, e190 (2006)
Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)
Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies.Am. J. Phys. Anthropol.128, 415–423 (2005)
Moorjani, P. et al. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years.Proc. Natl Acad. Sci. USA113, 5652–5657 (2016)
Acknowledgements
We thank I. Lazaridis, P.-R. Loh, I. Mathieson, I. Olalde, E. Palkopoulou, N. Patterson and P. Skoglund for helpful comments and suggestions; J. Krause for providing the Stuttgart sample for which we generated a new library in this study; A. Whittle and A. Bayliss from The Times of Their Lives project for providing the radiocarbon date for sample VEJ5a; and B. Havasi (Balaton Museum), G. V. Székely (Katona József Museum), C. Farkas (Dobó István Museum), B. Nagy (Herman Ottó Museum), I. Pap, A. Kustár, T. Hajdu (Hungarian Natural History Museum), J. Ódor (Wosinsky Mór Museum), E. Nagy (Janus Pannonius Museum), P. Rácz (King St Stephen Museum), L. Szathmáry (Debrecen University), N. Kalicz, V. Voicsek, O. Vajda-Kiss, V. Majerik and I. Ko˝vári for assistance with samples. This work was supported by the Australian Research Council (grant DP130102158 to B.L. and W.H.), Hungarian National Research, Development and Innovation Office (K 119540 to B.M.), German Research Foundation (Al 287/7-1, 10-1 and 14-1 to K.W.A.), FEDER and Ministry of Economy and Competitiveness of Spain (BFU2015-64699-P to C.L.-F.), National Science Foundation (HOMINID grant BCS-1032255 to D.R.), National Institutes of Health (NIGMS grant GM100233 to D.R.), and Howard Hughes Medical Institute (D.R.).
Author information
Mark Lipson and Anna Szécsényi-Nagy: These authors contributed equally to this work.
Authors and Affiliations
Department of Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA
Mark Lipson, Swapan Mallick, Nadin Rohland, Kristin Stewardson, Matthew Ferry, Megan Michel, Jonas Oppenheimer, Nasreen Broomandkhoshbacht, Eadaoin Harney, Susanne Nordenfelt & David Reich
Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, 1097, Hungary
Anna Szécsényi-Nagy, Annamária Pósa, Balázs Stégmár, Balázs Gusztáv Mende, Kitti Köhler, Krisztián Oross, Mária Bondár, Tibor Marton, Anett Osztás, János Jakucs, Gábor Serlegi & Eszter Bánffy
Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, 02142, Massachusetts, USA
Swapan Mallick & David Reich
Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Victoria Keerl, Ruth Bollongino & Joachim Burger
Howard Hughes Medical Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA
Kristin Stewardson, Matthew Ferry, Megan Michel, Jonas Oppenheimer, Nasreen Broomandkhoshbacht, Eadaoin Harney & David Reich
Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia
Bastien Llamas, Alan Cooper & Wolfgang Haak
Móra Ferenc Museum, Szeged 6720, Hungary
Tibor Paluch & Ferenc Horváth
Herman Ottó Museum, Miskolc 3529, Hungary
Piroska Csengeri & Judit Koós
Institute of Archaeological Sciences, Eötvös Loránd University, Budapest, 1088, Hungary
Katalin Sebők, Alexandra Anders & Pál Raczky
Laczkó Dezso˝ Museum, Veszprém 8200, Hungary
Judit Regenye
Balaton Museum, Keszthely 8360, Hungary
Judit P. Barna
Department of Archaeological Excavations and Artefact Processing, Hungarian National Museum, Budapest, 1088, Hungary
Szilvia Fábián
Jósa András Museum, Nyíregyháza 4400, Hungary
Zoltán Toldi
Déri Museum, Debrecen 4026, Hungary
Emese Gyöngyvér Nagy & János Dani
Department of Biological Anthropology, Szeged University, Szeged 6726, Hungary
Erika Molnár & György Pálfi
Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
László Márk
Imaging Center for Life and Material Sciences, University of Pécs, Pécs, 7624, Hungary
László Márk
Szentágothai Research Center, University of Pécs, Pécs, 7624, Hungary
László Márk, Béla Melegh & Zsolt Bánfai
PTE-MTA Human Reproduction Research Group, Pécs, 7624, Hungary
László Márk
Department of Medical Genetics and Szentágothai Research Center, University of Pécs, Pécs 7624, Hungary
Béla Melegh & Zsolt Bánfai
Dobó István Castle Museum, Eger, 3300, Hungary
László Domboróczki
Department of Geography, Prehistory, and Archaeology, University of the Basque Country, Investigation Group IT622-13, Vitoria-Gasteiz 01006, Spain
Javier Fernández-Eraso & José Antonio Mujika-Alustiza
CRONOS SC, Burgos 09007, Spain
Carmen Alonso Fernández & Javier Jiménez Echevarría
Department of Prehistoric Archaeology, Free University of Berlin, Berlin 14195, Germany
Jörg Orschiedt
Curt-Engelhorn-Centre Archaeometry gGmbH, Mannheim 68159, Germany
Jörg Orschiedt
Commission for Westphalian Antiquities, Westphalia-Lippe Regional Association, Münster, 48157, Germany
Kerstin Schierhold
State Office for Heritage Management and Archaeology Saxony-Anhalt and State Heritage Museum, Halle 06114, Germany
Harald Meller
Environment Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia
Alan Cooper
Romano-Germanic Commission, German Archaeological Institute, Frankfurt am Main 60325, Germany
Eszter Bánffy
Center of Natural and Cultural History of Man, Danube Private University, Krems-Stein 3500, Austria
Kurt W. Alt
Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
Kurt W. Alt
Institute for Integrative Prehistory and Archaeological Science, University of Basel, Basel 4055, Switzerland
Kurt W. Alt
Institute of Evolutionary Biology (CSIC-UPF), Barcelona 08003, Spain
Carles Lalueza-Fox
Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
Wolfgang Haak
- Mark Lipson
Search author on:PubMed Google Scholar
- Anna Szécsényi-Nagy
Search author on:PubMed Google Scholar
- Swapan Mallick
Search author on:PubMed Google Scholar
- Annamária Pósa
Search author on:PubMed Google Scholar
- Balázs Stégmár
Search author on:PubMed Google Scholar
- Victoria Keerl
Search author on:PubMed Google Scholar
- Nadin Rohland
Search author on:PubMed Google Scholar
- Kristin Stewardson
Search author on:PubMed Google Scholar
- Matthew Ferry
Search author on:PubMed Google Scholar
- Megan Michel
Search author on:PubMed Google Scholar
- Jonas Oppenheimer
Search author on:PubMed Google Scholar
- Nasreen Broomandkhoshbacht
Search author on:PubMed Google Scholar
- Eadaoin Harney
Search author on:PubMed Google Scholar
- Susanne Nordenfelt
Search author on:PubMed Google Scholar
- Bastien Llamas
Search author on:PubMed Google Scholar
- Balázs Gusztáv Mende
Search author on:PubMed Google Scholar
- Kitti Köhler
Search author on:PubMed Google Scholar
- Krisztián Oross
Search author on:PubMed Google Scholar
- Mária Bondár
Search author on:PubMed Google Scholar
- Tibor Marton
Search author on:PubMed Google Scholar
- Anett Osztás
Search author on:PubMed Google Scholar
- János Jakucs
Search author on:PubMed Google Scholar
- Tibor Paluch
Search author on:PubMed Google Scholar
- Ferenc Horváth
Search author on:PubMed Google Scholar
- Piroska Csengeri
Search author on:PubMed Google Scholar
- Judit Koós
Search author on:PubMed Google Scholar
- Katalin Sebők
Search author on:PubMed Google Scholar
- Alexandra Anders
Search author on:PubMed Google Scholar
- Pál Raczky
Search author on:PubMed Google Scholar
- Judit Regenye
Search author on:PubMed Google Scholar
- Judit P. Barna
Search author on:PubMed Google Scholar
- Szilvia Fábián
Search author on:PubMed Google Scholar
- Gábor Serlegi
Search author on:PubMed Google Scholar
- Zoltán Toldi
Search author on:PubMed Google Scholar
- Emese Gyöngyvér Nagy
Search author on:PubMed Google Scholar
- János Dani
Search author on:PubMed Google Scholar
- Erika Molnár
Search author on:PubMed Google Scholar
- György Pálfi
Search author on:PubMed Google Scholar
- László Márk
Search author on:PubMed Google Scholar
- Béla Melegh
Search author on:PubMed Google Scholar
- Zsolt Bánfai
Search author on:PubMed Google Scholar
- László Domboróczki
Search author on:PubMed Google Scholar
- Javier Fernández-Eraso
Search author on:PubMed Google Scholar
- José Antonio Mujika-Alustiza
Search author on:PubMed Google Scholar
- Carmen Alonso Fernández
Search author on:PubMed Google Scholar
- Javier Jiménez Echevarría
Search author on:PubMed Google Scholar
- Ruth Bollongino
Search author on:PubMed Google Scholar
- Jörg Orschiedt
Search author on:PubMed Google Scholar
- Kerstin Schierhold
Search author on:PubMed Google Scholar
- Harald Meller
Search author on:PubMed Google Scholar
- Alan Cooper
Search author on:PubMed Google Scholar
- Joachim Burger
Search author on:PubMed Google Scholar
- Eszter Bánffy
Search author on:PubMed Google Scholar
- Kurt W. Alt
Search author on:PubMed Google Scholar
- Carles Lalueza-Fox
Search author on:PubMed Google Scholar
- Wolfgang Haak
Search author on:PubMed Google Scholar
- David Reich
Search author on:PubMed Google Scholar
Contributions
A.S.-N., J.B., E.B., K.W.A., C.L.-F., W.H. and D.R. designed and supervised the study. B.G.M., K.K., K.O., M.B., T.M., A.O., J.J., T.P., F.H., P.C., J.K., K.Se., A.A., P.R., J.R., J.P.B., S.F., G.S., Z.T., E.G.N., J.D., E.M., G.P., L.M., B.M., Z.B., L.D., J.F.-E., J.A.M.-A., C.A.F., J.J.E., R.B., J.Or., K.Sc., H.M., A.C., J.B., E.B., K.W.A., C.L.-F. and W.H. provided samples and assembled archaeological and anthropological information. A.S.-N., A.P., B.S., V.K., N.R., K.St., M.F., M.M., J.Op., N.B., E.H., S.N. and B.L. performed laboratory work. M.L., A.S.-N., S.M. and D.R. analysed genetic data. M.L., A.S.-N. and D.R. wrote the manuscript with input from all coauthors.
Corresponding authors
Correspondence toMark Lipson,Anna Szécsényi-Nagy orDavid Reich.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer InformationNature thanks P. Bellwood and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Figure 1 First two principal components from the PCA.
We computed the principal components (PCs) for a set of 782 present-day western Eurasian individuals genotyped on the Affymetrix Human Origins array (background grey points) and then projected ancient individuals onto these axes. A close-up omitting the present-day Bedouin population is shown.
Extended Data Figure 2 Scaffold admixture graph used for modelling the European Neolithic populations.
Dotted lines denote admixture events. Neolithic Anatolians, LB1 and KO1 are modelled as admixed, with basal Eurasian ancestry, deeper European hunter-gatherer ancestry and FEF ancestry, respectively. European test populations were fitted as a mixture of FEF and ancestry related to one or two of the four WHG individuals (here VIL-related as an example). SeeSupplementary Information section 6 for details.
Extended Data Figure 3 Examples of ALDER weighted linkage disequilibrium decay curves.
Weighted linkage disequilibrium (LD) curves are shown as a function of genetic distanced, using Neolithic Anatolians and WHG as references, for four individuals: BAM17b (Starčevo Early Neolithic), CB13 (Iberia Early Neolithic), Bla8 (Blätterhöhle hunter-gatherer) and KO1. The results shown here use helper individuals M11-363 (Neolithic Anatolian), L11-322 (Neolithic Anatolian), BIC and LB1, respectively, and have fitted dates (blue curves) of 3.8 ± 1.2, 18.3 ± 6.0, 13.1 ± 2.7 and 21.6 ± 8.8 generations (compared to final individual-level dates of 4.5 ± 1.9, 17.5 ± 3.5, 12.1 ± 2.9 and 21.0 ± 7.0 generations; seeSupplementary Information section 7). Note that thex-axis scales are different for the four plots.
Extended Data Figure 4 Hunter-gatherer ancestry as a function of latitude and longitude for Neolithic individuals.
a,b, Early and Middle Neolithic Hungary.c,d, Late Neolithic and Chalcolithic Hungary.e,f, Iberia. HG, hunter-gatherer; Protob., Protoboleráz.
Extended Data Figure 5 Germany and Iberia time series and simulated data.
a, Dates of admixture.b, Hunter-gatherer ancestry proportions, normalized to the total of the most recent (rightmost) population. Symbols are as inFigs 1,2 and indicate population-level mean ± 2 s.e.m. Yellow dashed lines represent continuous admixture simulations: from top to bottom, diminishing 5% per generation, diminishing 3%, diminishing 1% and uniform. Green solid lines represent pulse-plus-continuous admixture simulations: from top to bottom, all hunter-gatherer ancestry in a pulse at time zero; three-quarters of final hunter-gatherer ancestry in an initial pulse followed by uniform continuous gene flow; half in initial pulse and half continuous; and one-quarter in initial pulse.
Supplementary information
Supplementary Information
This file contains Supplementary Notes 1-9. (PDF 3722 kb)
Supplementary Table 1
This file contains detailed sample information. (XLSX 92 kb)
Supplementary Table 2
This file contains detailed mitochondrial genome results. (XLSX 59 kb)
Rights and permissions
About this article
Cite this article
Lipson, M., Szécsényi-Nagy, A., Mallick, S.et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers.Nature551, 368–372 (2017). https://doi.org/10.1038/nature24476
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Lasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion
- Iñigo Olalde
- Eveline Altena
- David Reich
Nature (2026)
Admixture as a source for HLA variation in Neolithic European farming communities
- Nicolas Antonio da Silva
- Onur Özer
- Ben Krause-Kyora
Genome Biology (2025)
A probabilistic approach to visualize the effect of missing data on PCA in ancient human genomics
- Susanne Zabel
- Samira Breitling
- Kay Nieselt
BMC Genomics (2025)
Pre-processing of paleogenomes: mitigating reference bias and postmortem damage in ancient genome data
- Dilek Koptekin
- Etka Yapar
- Mehmet Somel
Genome Biology (2025)
The genomic footprints of migration: how ancient DNA reveals our history of mobility
- Matthew P. Williams
- Christian D. Huber
Genome Biology (2025)


