Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

Naturevolume 543pages411–415 (2017)Cite this article

Subjects

Abstract

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate1. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain1. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation2. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels2,3, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC‐8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Side and forward views of DC-8 contrails and the operational cruise curve.
Figure 2: Summary of particle emissions indices at all thrust and cruise conditions.
Figure 3: Size distributions of particle emissions at high-thrust and cruise conditions.

Similar content being viewed by others

ArticleOpen access06 July 2023

References

  1. Boucher, O. et al. inClimate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch.7 (Cambridge Univ. Press, 2013)

    Google Scholar 

  2. Kärcher, B., Burkhardt, U., Bier, A., Bock, L. & Ford, I. J. The microphysical pathway to contrail formation.J. Geophys. Res. Atmospheres120, 7893–7927 (2015)

    Article ADS  Google Scholar 

  3. Kärcher, B. The importance of contrail ice formation for mitigating the climate impact of aviation.J. Geophys. Res. Atmospheres121, 3497–3505 (2016)

    Article ADS  Google Scholar 

  4. Burkhardt, U. & Kärcher, B. Global radiative forcing from contrail cirrus.Nat. Clim. Chang.1, 54–58 (2011)

    Article ADS  Google Scholar 

  5. Lee, D. S. et al. Transport impacts on atmosphere and climate: aviation.Atmos. Environ.44, 4678–4734 (2010)

    Article ADS CAS  Google Scholar 

  6. Brasseur, G. P. et al. Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II.Bull. Am. Meteorol. Soc.97, 561–583 (2016)

    Article ADS  Google Scholar 

  7. Gettelman, A. & Chen, C. The climate impact of aviation aerosols.Geophys. Res. Lett.40, 2785–2789 (2013)

    Article ADS CAS  Google Scholar 

  8. Tesche, M., Achtert, P., Glantz, P. & Noone, K. J. Aviation effects on already-existing cirrus clouds.Nat. Commun.7, 12016 (2016)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  9. Ringbeck, J. V. K. Aviation biofuels: a roadmap towards more carbon-neutral skies.Biofuels1, 519–521 (2010)

    Article CAS  Google Scholar 

  10. Rye, L., Blakey, S. & Wilson, C. Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels. Energy Environ.Sci.3, 17–27 (2010)

    CAS  Google Scholar 

  11. Warshay, B., Pan, J. & Sgouridis, S. Aviation industry’s quest for a sustainable fuel: considerations of scale and modal opportunity carbon benefit.Biofuels2, 33–58 (2011)

    Article CAS  Google Scholar 

  12. Law, C. K. Fuel options for next-generation chemical propulsion.AIAA J.50, 19–36 (2012)

    Article ADS CAS  Google Scholar 

  13. Savage, N. Fuel options: the ideal biofuel.Nature474, S9–S11 (2011)

    Article CAS PubMed  Google Scholar 

  14. Corporan, E. et al. Emissions characteristics of a turbine engine and research combustor burning a Fischer–Tropsch jet fuel.Energy Fuels21, 2615–2626 (2007)

    Article CAS  Google Scholar 

  15. Lobo, P., Hagen, D. E. & Whitefield, P. D. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer–Tropsch fuels.Environ. Sci. Technol.45, 10744–10749 (2011)

    Article ADS CAS PubMed  Google Scholar 

  16. Moore, R. H. et al. Influence of jet fuel composition on aircraft engine emissions: a synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS missions.Energy Fuels29, 2591–2600 (2015)

    Article CAS  Google Scholar 

  17. Schumann, U. et al.In situ observations of particles in jet aircraft exhaust and contrails for different sulfur-containing fuels.J. Geophys. Res. Atmospheres101, 6853–6869 (1996)

    Article ADS CAS  Google Scholar 

  18. Anderson, B. E. et al. Airborne observations of aircraft aerosol emissions I: total nonvolatile particle emission indices.Geophys. Res. Lett.25, 1689–1692 (1998)

    Article ADS CAS  Google Scholar 

  19. Schröder, F. P. et al. Ultrafine aerosol particles in aircraft plumes:in situ observations.Geophys. Res. Lett.25, 2789–2792 (1998)

    Article ADS  Google Scholar 

  20. Toon, O. B. & Miake-Lye, R. C. Subsonic aircraft: contrail and cloud effects special study (SUCCESS).Geophys. Res. Lett.25, 1109–1112 (1998)

    Article ADS CAS  Google Scholar 

  21. Petzold, A., Döpelheuer, A., Brock, C. & Schröder, F.In situ observations and model calculations of black carbon emission by aircraft at cruise altitude.J. Geophys. Res. Atmospheres104, 22171–22181 (1999)

    Article ADS CAS  Google Scholar 

  22. Schumann, U. et al. Influence of fuel sulfur on the composition of aircraft exhaust plumes: the experiments SULFUR 1–7.J. Geophys. Res. Atmospheres107, ACC 2-1–ACC 2-27 (2002)

    Article  Google Scholar 

  23. Brock, C. A. et al. Ultrafine particle size distributions measured in aircraft exhaust plumes.J. Geophys. Res. Atmospheres105, 26555–26567 (2000)

    Article ADS CAS  Google Scholar 

  24. Petzold, A. & Döpelheuer, A. Observations of black carbon mass emission indices of a jet engine.Aerosol Sci. Technol.29, 355–356 (1998)

    Article ADS CAS  Google Scholar 

  25. Peck, J., Oluwole, O. O., Wong, H.-W. & Miake-Lye, R. C. An algorithm to estimate aircraft cruise black carbon emissions for use in developing a cruise emissions inventory.J. Air Waste Manag. Assoc.63, 367–375 (2013)

    Article CAS PubMed  Google Scholar 

  26. Stettler, M. E. J., Boies, A. M., Petzold, A. & Barrett, S. R. H. Global civil aviation black carbon emissions. Environ.Sci. Technol.47, 10397–10404 (2013)

    CAS  Google Scholar 

  27. Unterstrasser, S. Properties of young contrails – a parametrisation based on large-eddy simulations.Atmos. Chem. Phys.16, 2059–2082 (2016)

    Article ADS CAS  Google Scholar 

  28. Schumann, U., Jeßberger, P. & Voigt, C. Contrail ice particles in aircraft wakes and their climatic importance.Geophys. Res. Lett.40, 2867–2872 (2013)

    Article ADS CAS  Google Scholar 

  29. Jeßberger, P. et al. Aircraft type influence on contrail properties.Atmos. Chem. Phys.13, 11965–11984 (2013)

    Article ADS CAS  Google Scholar 

  30. Lewellen, D. C. Persistent contrails and contrail cirrus. Part II: full lifetime behavior.J. Atmos. Sci.71, 4420–4438 (2014)

    Article ADS  Google Scholar 

  31. Wey, C. C. et al. Overview on the aircraft particle emissions experiment (APEX).J. Propuls. Power23, 898–905 (2007)

    Article CAS  Google Scholar 

  32. Anderson, B. et al.Alternative Aviation Fuel Experiment (AAFEX). Report No. NASA/TM-2011-217059 (NASA, 2011)

    Google Scholar 

  33. Beyersdorf, A. J. et al. Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels.Atmos. Chem. Phys.14, 11–23 (2014)

    Article ADS CAS  Google Scholar 

  34. Onasch, T. B. et al. Chemical properties of aircraft engine particulate exhaust emissions.J. Propuls. Power25, 1121–1137 (2009)

    Article CAS  Google Scholar 

  35. The Technology Behind the CFM56-2 Turbofan Enginehttps://web.archive.org/web/20120430172000/http://www.cfm56.com/products/cfm56-2/cfm56-2-technology (accessed 11 May 2016)

  36. European Advanced Biofuels Flight Path Initiativehttp://ec.europa.eu/energy/en/topics/biofuels/biofuels-aviation (accessed 22 July 2016)

  37. Agriculture and Aviation: Partners in Prosperityhttp://www.caafi.org/files/usda-farm-to-fly-report-jan-2012.pdf (US Department of Agriculture, 2012)

  38. Aviation Outlookhttp://www.icao.int/environmental-protection/Documents/EnvironmentReport-2010/ICAO_EnvReport10-Outlook_en.pdf (International Civil Aviation Organization, 2010)

  39. Annual Energy Outlook 2016: Petroleum and Other Liquids Supply and Dispositionhttp://www.eia.gov/forecasts/aeo/data/browser/#/?id=11-AEO2016&region=0-0&cases=ref2016~ref_no_cpp&start=2014&end=2018&f=A&linechart=ref2016-d032416a.3-11-AEO2016~ref_no_cpp-d032316a.3-11-AEO2016&sourcekey=0 (US Energy Information Administration, 2016)

  40. Moses, C. A. & Roets, P. N. Properties, characteristics, and combustion performance of Sasol fully synthetic jet fuel.J. Eng. Gas Turbines Power131, 041502 (2009)

    Article CAS  Google Scholar 

  41. Corporan, E. et al. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels.Energy Fuels25, 955–966 (2011)

    Article CAS  Google Scholar 

  42. DeWitt, M. J., Corporan, E., Graham, J. & Minus, D. Effects of aromatic type and concentration in Fischer–Tropsch fuel on emissions production and material compatibility.Energy Fuels22, 2411–2418 (2008)

    Article CAS  Google Scholar 

  43. ASTM International.ASTM D1655: Standard Specification for Aviation Turbine Fuelshttp://www.astm.org/Standards/D1655.htm (2016)

  44. ASTM International.ASTM D7566: Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbonshttp://www.astm.org/Standards/D7566.htm (2016)

  45. Voigt, C. et al.In-situ observations of young contrails: overview and selected results from the CONCERT campaign.Atmos. Chem. Phys.10, 9039–9056 (2010)

    Article ADS CAS  Google Scholar 

  46. Moore, R. H. et al. Mapping the operation of the Miniature Combustion Aerosol Standard (Mini-CAST) soot generator.Aerosol Sci. Technol.48, 467–479 (2014)

    Article ADS CAS  Google Scholar 

  47. Bond, T. C. & Bergstrom, R. W. Light absorption by carbonaceous particles: an investigative review.Aerosol Sci. Technol.40, 27–67 (2006)

    Article ADS CAS  Google Scholar 

  48. Virkkula, A. Correction of the calibration of the 3-wavelength Particle Soot Absorption Photometer (3λ PSAP).Aerosol Sci. Technol.44, 706–712 (2010)

    Article ADS CAS  Google Scholar 

  49. von der Weiden, S.-L., Drewnick, F. & Borrmann, S. Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems.Atmos. Meas. Tech.2, 479–494 (2009)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank the flight crew of the NASA DC-8 and DLR Falcon, W. Ringelberg, D. Fedors, T. Asher, M. Berry, B. Elit, T. Sandon, P. Weber, R. Welser, S. Kaufmann, T. Klausner, A. Reiter, A. Roiger, R. Schlage and U. Schumann for providing meteorological forecasts, and B. Kärcher and P. Le Clercq for discussions. This work was supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, the DLR Aeronautics Research Programme, the Transport Canada Clean Transportation Initiative, and the National Research Council Canada CAAFER Project (46FA-JA12). R.H.M. was supported, in part, by a NASA Postdoctoral Program fellowship. B.W. was supported by the Helmholtz Association (grant number VH-NG-606) and by the European Research Council grant agreement number 640458. C.V. and T.J. were supported by the Helmholtz Association (grant number W2/W3-060) and the German Science Foundation (DFG grant number JU3059/1-1).

Author information

Authors and Affiliations

  1. NASA Langley Research Center, Hampton, Virginia, USA

    Richard H. Moore, Kenneth L. Thornhill, Brian Beaton, Andreas J. Beyersdorf, John Barrick, Chelsea A. Corr, Ewan Crosbie, Robert Martin, Dean Riddick, Michael Shook, Gregory Slover, Robert White, Edward Winstead, Richard Yasky, Luke D. Ziemba & Bruce E. Anderson

  2. Science Systems and Applications, Incorporated (SSAI), Hampton, Virginia, USA

    Kenneth L. Thornhill, John Barrick, Michael Shook & Edward Winstead

  3. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, Germany

    Bernadett Weinzierl, Daniel Sauer, Eugenio D’Ascoli, Jin Kim, Michael Lichtenstern, Monika Scheibe, Tina Jurkat, Christiane Voigt & Hans Schlager

  4. University of Vienna, Wien, Austria

    Bernadett Weinzierl

  5. Ludwig Maximillians University, Munich, Germany

    Daniel Sauer & Eugenio D’Ascoli

  6. California State University San Bernardino, San Bernardino, California, USA

    Andreas J. Beyersdorf

  7. NASA Glenn Research Center, Cleveland, Ohio, USA

    Dan Bulzan

  8. Bennington College, Bennington, Vermont, USA

    Chelsea A. Corr

  9. NASA Postdoctoral Program, Columbia, Maryland, USA

    Ewan Crosbie

  10. Johannes Gutenberg University, Mainz, Germany

    Christiane Voigt

  11. National Research Council Canada, Ottawa, Ontario, Canada

    Anthony Brown

Authors
  1. Richard H. Moore

    You can also search for this author inPubMed Google Scholar

  2. Kenneth L. Thornhill

    You can also search for this author inPubMed Google Scholar

  3. Bernadett Weinzierl

    You can also search for this author inPubMed Google Scholar

  4. Daniel Sauer

    You can also search for this author inPubMed Google Scholar

  5. Eugenio D’Ascoli

    You can also search for this author inPubMed Google Scholar

  6. Jin Kim

    You can also search for this author inPubMed Google Scholar

  7. Michael Lichtenstern

    You can also search for this author inPubMed Google Scholar

  8. Monika Scheibe

    You can also search for this author inPubMed Google Scholar

  9. Brian Beaton

    You can also search for this author inPubMed Google Scholar

  10. Andreas J. Beyersdorf

    You can also search for this author inPubMed Google Scholar

  11. John Barrick

    You can also search for this author inPubMed Google Scholar

  12. Dan Bulzan

    You can also search for this author inPubMed Google Scholar

  13. Chelsea A. Corr

    You can also search for this author inPubMed Google Scholar

  14. Ewan Crosbie

    You can also search for this author inPubMed Google Scholar

  15. Tina Jurkat

    You can also search for this author inPubMed Google Scholar

  16. Robert Martin

    You can also search for this author inPubMed Google Scholar

  17. Dean Riddick

    You can also search for this author inPubMed Google Scholar

  18. Michael Shook

    You can also search for this author inPubMed Google Scholar

  19. Gregory Slover

    You can also search for this author inPubMed Google Scholar

  20. Christiane Voigt

    You can also search for this author inPubMed Google Scholar

  21. Robert White

    You can also search for this author inPubMed Google Scholar

  22. Edward Winstead

    You can also search for this author inPubMed Google Scholar

  23. Richard Yasky

    You can also search for this author inPubMed Google Scholar

  24. Luke D. Ziemba

    You can also search for this author inPubMed Google Scholar

  25. Anthony Brown

    You can also search for this author inPubMed Google Scholar

  26. Hans Schlager

    You can also search for this author inPubMed Google Scholar

  27. Bruce E. Anderson

    You can also search for this author inPubMed Google Scholar

Contributions

R.H.M., B.B., G.S., R.Y., A.B., H.S. and B.E.A. designed and carried out the flight experiment; B.B., J.B., R.M., D.R. and R.W. designed and assisted with the payload integration; R.H.M., K.L.T., B.W., D.S., E.D., J.K., M.L., M.S., D.B., T.J., C.V., E.W., L.D.Z., A.B. and B.E.A. made in-flight measurements and analysed the data; R.H.M. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence toRichard H. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Mean fuel properties (±1 a.s.d.) for each of the three fuels investigated
Extended Data Table 2 Summary of cruise emissions index tables
Extended Data Table 3 Emissions indices for no. 2 engine under high-thrust and cruise conditions
Extended Data Table 4 Emissions indices for no. 3 engine under high-thrust and cruise conditions
Extended Data Table 5 Emissions indices for no. 2 engine under medium-thrust and cruise conditions
Extended Data Table 6 Emissions indices for no. 2 engine under low-thrust and cruise conditions
Extended Data Table 7 Emissions indices for no. 3 engine under low-thrust and cruise conditions
Extended Data Table 8 Fit coefficients for the number size distribution
Extended Data Table 9 Fit coefficients for the volume size distribution

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, R., Thornhill, K., Weinzierl, B.et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.Nature543, 411–415 (2017). https://doi.org/10.1038/nature21420

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Biofuels take to the skies

Aviation affects the climate as a result of aerosol and carbon dioxide emissions from fossil fuels. Biofuels could be a future source of aviation energy that is not dependent on fossilized carbon, but the environmental impact of these fuels, when used by planes in flight, has not yet been investigated. This study presents observational data gathered from directly behind an aircraft flying at cruise altitude and finds that, compared to using purely conventional fuel, a blend of conventional fuel and biofuel reduces aerosol particle emissions by 50 to 70 per cent. The authors also provide several aerosol parameters that will help transportation and climate modellers to assess whether the use of biofuels in aviation is a feasible strategy to mitigate climate change.

Associated content

Biofuels: In-flight insights

  • James Gallagher
Nature EnergyResearch Highlight

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp