- Letter
- Published:
Hydroclimate changes across the Amazon lowlands over the past 45,000 years
- Xianfeng Wang1,2,
- R. Lawrence Edwards3,
- Augusto S. Auler4,
- Hai Cheng3,5,
- Xinggong Kong6,
- Yongjin Wang6,
- Francisco W. Cruz7,
- Jeffrey A. Dorale8 &
- …
- Hong-Wei Chiang1
Naturevolume 541, pages204–207 (2017)Cite this article
11kAccesses
80Altmetric
Subjects
Abstract
Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection1,2. For example, whether the Amazon basin was substantially drier3,4 or remained wet1,5 during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting6. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide7. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others

Millennial-scale climate variability in the Northern Hemisphere influenced glacier dynamics in the Alps around 250,000 years ago
References
Baker, P. A. et al. The history of South American tropical precipitation for the past 25,000 years.Science291, 640–643 (2001)
Maslin, M. A. et al. Dynamic boundary-monsoon intensity hypothesis: evidence from the deglacial Amazon River discharge record.Quat. Sci. Rev.30, 3823–3833 (2011)
Ledru, M.-P., Bertaux, J. & Sifeddine, A. Absence of Last Glacial Maximum records in lowland tropical forests.Quat. Res.49, 233–237 (1998)
D’Apolito, C., Absy, M. L. & Latrubesse, E. M. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site.Quat. Sci. Rev.76, 140–155 (2013)
Colinvaux, P. A. et al. A long pollen record from lowland Amazonia: forest and cooling in glacial times.Science274, 85–88 (1996)
Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America.Quat. Sci. Rev.124, 31–47 (2015)
Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation.Nature514, 616–619 (2014)
Stute, M. et al. Cooling of tropical Brazil (5°C) during the Last Glacial Maximum.Science269, 379–383 (1995)
van Breukelen, M. R. et al. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia.Earth Planet. Sci. Lett.275, 54–60 (2008)
Eltahir, E. A. B. & Bras, R. L. Precipitation recycling in the Amazon Basin.Q. J. R. Meteorol. Soc.120, 861–880 (1994)
Dansgaard, W. Stable isotopes in precipitation.Tellus16, 436–468 (1964)
Vuille, M. et al. Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls.J. Geophys. Res.108 (D6), 4174 (2003)
Lee, J.-E., Johnson, K. & Fung, I. Precipitation over South America during the Last Glacial Maximum: an analysis of the “amount effect” with a water isotope-enabled general circulation model.Geophys. Res. Lett.36, L19701 (2009)
Wanner, H. et al. Mid- to late Holocene climate change: an overview.Quat. Sci. Rev.27, 1791–1828 (2008)
Wang, X. et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years.Geophys. Res. Lett.34, L23701 (2007)
Cruz, F. W. et al. Orbitally driven east-west antiphasing of South American precipitation.Nat. Geosci.2, 210–214 (2009)
Cheng, H. et al. Climate change patterns in Amazonia and biodiversity.Nat. Commun.4, 1411 (2013)
Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.Nature484, 49–54 (2012)
Jaeschke, A., Rühlemann, C., Arz, H., Heil, G. & Lohmann, G. Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period.Paleoceanography22, PA4206 (2007)
Cook, K. H. & Vizy, E. K. South American climate during the Last Glacial Maximum: delayed onset of the South American monson.J. Geophys. Res.111, D02110 (2006)
Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon.Science319, 169–172 (2008)
Koutavas, A. & Joanides, St. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum.Paleoceanography27, PA4208 (2012)
Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China.Science294, 2345–2348 (2001)
Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations.Nature534, 640–646 (2016)
WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age.Nature520, 661–665 (2015)
Salati, E., Dall’Olio, A., Matsui, E. & Gat, J. R. Recycling of water in the Amazon Basin: an isotopic study.Wat. Resour. Res.15, 1250–1258 (1979)
Winnick, M. J., Chamberlain, C. P., Caves, J. K. & Welker, J. M. Quantifying the isotopic ‘continental effect’.Earth Planet. Sci. Lett.406, 123–133 (2014)
Held, I. M. & Soden, B. J. Robust response of the hydrological cycle to global warming.J. Clim.19, 5686–5699 (2006)
Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing.Nature441, 73–76 (2006)
Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passes over forests.Nature489, 282–285 (2012)
Edwards, R. L., Chen, J. H. & Wasserburg, G. J.238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years.Earth Planet. Sci. Lett.81, 175–192 (1986/87)
Cheng, H. et al. The half-lives of uranium-234 and thorium-230.Chem. Geol.169, 17–33 (2000)
Shen, C.-C. et al. High-precision and high-resolution carbonate230Th dating by MC-ICP-MS with SEM protocols.Geochim. Cosmochim. Acta99, 71–86 (2012)
Cheng, H. et al. Improvements in230Th dating,230Th and234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry.Earth Planet. Sci. Lett.371/372, 82–91 (2013)
Fairchild, I. J. & Baker, A.Speleothem Science: From Process To Past Environments p.450 (Wiley–Blackwell, 2012)
Dorale, J. A., Edwards, R. L., Ito, E. & González, L. A. Climate and vegetation history of the mid-continent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA.Science282, 1871–1874 (1998)
Hendy, C. H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators.Geochim. Cosmochim. Acta35, 801–824 (1971)
Bowen, G. J. Isoscapes: spatial pattern in isotopic biogeochemistry.Annu. Rev. Earth Planet. Sci.38, 161–187 (2010)
Johnston, V. E., Borsato, A., Spotl, C., Frisia, S. & Miorandi, R. Stable isotopes in caves over altitudinal gradients: fractionation behavior and inferences for speleothem sensitivity to climate change.Clim. Past9, 99–118 (2013)
Vuille, M. & Werner, M. Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: observations and model results.Clim. Dyn.25, 401–413 (2005)
Masson-Delmotte, V. M. et al. inClimate Change 2013: The Physical Science Basis Ch.5 (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013)
MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum.Nat. Geosci.2, 127–132 (2009)
Marcott, S. A. et al. A reconstruction of regional and global temperature for the past 11,300 years.Science339, 1198–1201 (2013)
Thornthwaite, C. W. An approach toward a rational classification of climate.Geogr. Rev.38, 55–94 (1948)
McCabe, G. J. & Markstrom, S. L. A monthly water balance model driven by a graphical user interface.US Geol. Surv. Open-File Rep. 2007–1008 (2007)
Betts, A. K. & Ridgway, W. Tropical boundary layer equilibrium in the last ice age.J. Geophys. Res.97, 2529–2534 (1992)
Kageyama, M., Harrison, S. P. & Abe-Ouchi, A. The depression of tropical snowlines at the last glacial maximum: what can we learn from climate model experiments?Quat. Int.138-139, 202–219 (2005)
Broecker, W. S. Mountain glaciers: records of atmospheric water vapor content?Glob. Biogeochem. Cycles11, 589–597 (1997)
Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. inClimate Change In Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S. ) doi:10.1029/GM078p0001 (Am. Geophys. Union, Washington DC, 1993)
Laskar, J. et al. A long-term numerical solution for the insolation.Astron. Astrophys.428, 261–285 (2004)
Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present.Nature453, 379–382 (2008)
Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.Nature453, 383–386 (2008)
NGRIP Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period.Nature431, 147–151 (2004)
EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica.Nature444, 195–198 (2006)
Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years.Clim. Past9, 1733–1748 (2013)
Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology.Clim. Past4, 47–57 (2008)
Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies.Nature432, 740–743 (2004)
Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 .Science323, 1443–1448 (2009)
Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw?Paleoceanography13, 119–121 (1998)
Buizert, C. et al. The WAIS Divide deep ice core WD2014 chronology. Part 1. Methane synchronization (68–31ka BP) and the gas age–ice age difference.Clim. Past11, 153–173 (2015)
Genty, D. et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data.Nature421, 833–837 (2003)
Schrag, D. P., Hampt, G. & Murray, D. W. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean.Science272, 1930–1932 (1996)
Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum.Quat. Sci. Rev.21, 331–342 (2002)
Horita, J. & Wesolowski, D. J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature.Geochim. Cosmochim. Acta58, 3425–3437 (1994)
Acknowledgements
This work was supported by a Singapore National Research Foundation (NRF) Fellowship (NRFF2011-08) and a Gary Comer Fellowship to X.W.; US National Science Foundation (NSF) grants 1103404 and 1317693 to R.L.E. and H.C.; a Brazil National Council for Scientific and Technological Development (CNPq) grant (540064/01-7) to A.S.A.; grants from the China National Basic Research Program (NBRP; 2013CB955902) and the National Natural Science Foundation of China (NSFC; 41230524) to H.C.; and a grant from the São Paulo Research Foundation of Brazil and US NSF Dimensions of Biodiversity joint program (FAPESP/NSF; 2012/50260-6) to F.W.C. Field travelling funds were partially supported by a National Geographical Society grant, 7574-03. We acknowledge the help of colleagues from the Grupo Bambuí de Pesquisas Espeleológicas with cave mapping and sampling. We thank R. Fonseca, S. Yuan, Y. Lu and Y. Djamil for assistance with the figures concerning wind fields and regional rainfall, and B. Wohlfarth and S. Hemming for discussions during manuscript preparation.
Author information
Authors and Affiliations
Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore
Xianfeng Wang & Hong-Wei Chiang
Asian School of the Environment, Nanyang Technological University, 639798, Singapore
Xianfeng Wang
Department of Earth Sciences, University of Minnesota, Minneapolis, 55455, Minnesota, USA
R. Lawrence Edwards & Hai Cheng
Instituto do Carste, Belo Horizonte, Minas, 30150-160, Gerais, Brazil
Augusto S. Auler
Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, 710049, China
Hai Cheng
School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
Xinggong Kong & Yongjin Wang
Instituto de Geociências, Universidade de São Paulo, São Paulo, 05508-080, Brazil
Francisco W. Cruz
Department of Earth & Environmental Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
Jeffrey A. Dorale
- Xianfeng Wang
You can also search for this author inPubMed Google Scholar
- R. Lawrence Edwards
You can also search for this author inPubMed Google Scholar
- Augusto S. Auler
You can also search for this author inPubMed Google Scholar
- Hai Cheng
You can also search for this author inPubMed Google Scholar
- Xinggong Kong
You can also search for this author inPubMed Google Scholar
- Yongjin Wang
You can also search for this author inPubMed Google Scholar
- Francisco W. Cruz
You can also search for this author inPubMed Google Scholar
- Jeffrey A. Dorale
You can also search for this author inPubMed Google Scholar
- Hong-Wei Chiang
You can also search for this author inPubMed Google Scholar
Contributions
X.W., R.L.E. and A.S.A. designed the project. X.W., A.S.A. and J.A.D. performed the fieldwork and sampling. X.W. and H.-W. C. carried out the uranium/thorium dating. X.W., X.K. and Y.W. contributed to the oxygen-isotope measurements. X.W. wrote the manuscript, which was edited by R.L.E. and other authors. All authors discussed the results and implications and commented on the manuscript at all stages.
Corresponding author
Correspondence toXianfeng Wang.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer InformationNature thanks M. Bush, J. Shakun and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Extended data figures and tables
Extended Data Figure 1 Cave locations and moisture pathways.
a, The locations of Paraíso Cave in the eastern Amazon (red rectangle), and of Diamante cave17 (blue rectangle) and Tigre Perdido cave9 (purple rectangle) in the western Amazon. Paraíso Cave is located between Belém and Manaus, next to the Tapajós River. Also shown are easterlies, which carry moisture to the lowlands from the tropical Atlantic. The Amazon basin and the Andes are shown in green and brown, respectively.b, 72-hour back-trajectories of moisture arriving at Paraíso and the western Amazonian cave sites (white stars), during the wet season (in red) and the dry season (in blue), averaged over 1981 to 2010. The background topographical map was created with grid files from the global multi-resolution topography (GMRT) synthesis (http://www.marine-geo.org/tools/GMRTMapTool). Moisture trajectories were derived using the US National Oceanic and Atmospheric Administration (NOAA) Hysplit model (http://ready.arl.noaa.gov/HYSPLIT.php). The moisture at the Paraíso Cave site is predominantly from the tropical Atlantic, whereas precipitation received in the western Amazon has largely endured recycling in the lowlands.
Extended Data Figure 2 Climatology of tropical South America.
a, Depiction of horizontal winds over South America at 850 hPa (vectors, in metres per second), based on data from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (1981–2010;http://cfs.ncep.noaa.gov/cfsr/atlas/). Also shown is precipitation (blue shading, in millimetres per day) from the Tropical Rainfall Measuring Mission (TRMM) 3B43 dataset (1998–2010;http://trmm.gsfc.nasa.gov/3b43.html). Winds and precipitation are averaged over December to March.b, As ina, but for June to September.c, Monthly averaged temperature, precipitation and rainfall δ18O over Belém (blue dots) and Manaus (green triangles). The local climate at Paraíso Cave shares the same characteristics as those of Belém and Manaus. Data are from the International Atomic Energy Agency (IAEA) Global Networks of Isotopes in Precipitation (GNIP) database (http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html).
Extended Data Figure 3 A Paraíso calcite stalagmite, and age models.
a, Image of a Paraíso sample. The Paraíso calcite stalagmites typically have a high uranium concentration (up to 40 p.p.m.) but a low thorium concentration (<1 parts per billion, p.p.b.), almost ideal for uranium/thorium-based age determination.b, Age models for samples PAR01, PAR03, PAR06, PAR07, PAR08, PAR16 and PAR24. The chronology of the samples is established by linear interpolation between successive uranium/thorium dates. Dates are shown in black dots. Age uncertainties (2σ) are also included (most of the error bars are smaller than the symbols).
Extended Data Figure 4 Scatterplots of oxygen and carbon isotope ratios for the Paraíso stalagmites.
a, Relationship between the δ18O and δ13C data for Holocene Paraíso stalagmites.b, As ina, but for glacial Paraíso samples.
Extended Data Figure 5 Estimation of monthly water balance in the region.
a, Monthly averaged precipitation (solid dots and triangles) and actual evapotranspiration (AET, open dots and triangles) over Belém and Manaus. We used the water-balance model44 as implemented in the US Geological Survey (USGS) Thornthwaite model45 to calculate monthly AET.b, As ina, but for LGM conditions. We assume that the cave temperature was ~21 °C during the LGM. Rainfall in the region was ~60% of today’s in each month, as calculated inExtended Data Table 1. The LGM and present-day patterns are essentially the same.
Extended Data Figure 6 Comparisons of the Paraíso record with local insolation curves.
The cave δ18O record spans about 46,000 years, long enough to cover two precessional cycles. However, no obvious correlation can be observed between the cave record with local insolation in the months of January (blue), April (cyan), July (dark blue) and October (dark cyan). Insolation data are from ref.50.
Extended Data Figure 8 Comparisons of the Paraíso cave record and ice-core records.
a, The Paraíso δ18O record is compared with ice-core records from Greenland53 (dark blue; North Greenland Ice Core Project (NGRIP)) and from Antarctica54 (blue; EPICA Dronning Maud Land (EDML) Ice Core) during the time interval from 25 kyrbp to 45 kyrbp. The NGRIP ice-core data are plotted in the Antarctic ice-core chronology 2012 (AICC12) timescale55, which is identical to the annual-layer-counted Greenland ice-core chronology 2005 (GICC05) timescale56 for the studied time interval. The EDML ice-core data are plotted in the AICC12 age scale55. D/O events are marked on the NGRIP record. The strong correlations between the Paraíso record and the ice-core records confirm the existence of rapid air–sea interactions between the high latitudes and the tropics on millennial timescales57,58, probably through the so-called bipolar seesaw mechanism59.b, As ina, but the Paraíso record is compared with ice-core records from Greenland53 (dark blue; NGRIP) and from Antarctica25 (blue; West Antarctic Ice Sheet Divide Ice Core (WDC)). The NGRIP and WDC data are plotted in the West Antarctic Ice Sheet Divide (WD) 2014 timescale25. The slightly enhanced correlations between the Paraíso record and the ice-core records, albeit visually, support the chronological method adopted in ref.60. VSMOW, Vienna standard mean ocean water.
Extended Data Figure 9 Paraíso δ13C record.
Contrary to the stalagmite δ18O record, the Paraíso δ13C record does not show an obvious shift from the last glacial period to the Holocene. In fact, the δ13C value reaches as low as about −10‰ during the LGM, similar to the observed minimum value in the Holocene. This suggests that the type of vegetation in the region has not undergone dramatic changes, remaining dominated by C3 plants37,61. The rainforest in the eastern Amazon might have become an open forest when the precipitation decreased substantially during the LGM. However, it was not replaced by savanna or grassland—that is, it has not become dominated by C4 plants. The δ13C spikes were probably caused by individual air–water–rock interactions during calcite precipitation.
Supplementary information
Supplementary Table 1
This table contains the Paraíso speleothem U-Th dating results, and δ18O and δ13C data. (XLS 458 kb)
Rights and permissions
About this article
Cite this article
Wang, X., Edwards, R., Auler, A.et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years.Nature541, 204–207 (2017). https://doi.org/10.1038/nature20787
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
The role of rivers in the origin and future of Amazonian biodiversity
- Camila C. Ribas
- André O. Sawakuchi
- L. Lacey Knowles
Nature Reviews Biodiversity (2025)
Origin of sandy substrates controlling the distribution of open vegetation ecosystems in Amazonia
- Fernanda C. G. Rodrigues
- Camila C. Ribas
- André O. Sawakuchi
Scientific Reports (2024)
Weaker Atlantic overturning circulation increases the vulnerability of northern Amazon forests
- T. K. Akabane
- C. M. Chiessi
- P. E. De Oliveira
Nature Geoscience (2024)
Changes in the South American Monsoon System components since the Last Glacial Maximum: a TraCE-21k perspective
- Igor Stivanelli Custódio
- Pedro Leite da Silva Dias
- Luciana F. Prado
Climate Dynamics (2024)
Seasonal effects on the potential spatial distribution of Amazonian migratory catfishes
- Facundo Alvarez
- Tiago Magalhães da Silva Freitas
- Daniel Paiva Silva
Reviews in Fish Biology and Fisheries (2024)